| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . . . . . 8
⊢
((SalGen‘𝑋) =
𝑆 →
(SalGen‘𝑋) = 𝑆) |
| 2 | 1 | eqcomd 2743 |
. . . . . . 7
⊢
((SalGen‘𝑋) =
𝑆 → 𝑆 = (SalGen‘𝑋)) |
| 3 | 2 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 = (SalGen‘𝑋)) |
| 4 | | dfsalgen2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 5 | | salgencl 46347 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) |
| 6 | 4, 5 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (SalGen‘𝑋) ∈ SAlg) |
| 7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) ∈ SAlg) |
| 8 | 3, 7 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 ∈ SAlg) |
| 9 | | unieq 4918 |
. . . . . . 7
⊢
((SalGen‘𝑋) =
𝑆 → ∪ (SalGen‘𝑋) = ∪ 𝑆) |
| 10 | 9 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ∪
(SalGen‘𝑋) = ∪ 𝑆) |
| 11 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋 ∈ 𝑉) |
| 12 | | eqid 2737 |
. . . . . . 7
⊢
(SalGen‘𝑋) =
(SalGen‘𝑋) |
| 13 | | eqid 2737 |
. . . . . . 7
⊢ ∪ 𝑋 =
∪ 𝑋 |
| 14 | 11, 12, 13 | salgenuni 46352 |
. . . . . 6
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ∪
(SalGen‘𝑋) = ∪ 𝑋) |
| 15 | 10, 14 | eqtr3d 2779 |
. . . . 5
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ∪ 𝑆 = ∪
𝑋) |
| 16 | 12 | sssalgen 46350 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ (SalGen‘𝑋)) |
| 17 | 11, 16 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋 ⊆ (SalGen‘𝑋)) |
| 18 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑆) |
| 19 | 17, 18 | sseqtrd 4020 |
. . . . 5
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋 ⊆ 𝑆) |
| 20 | 8, 15, 19 | 3jca 1129 |
. . . 4
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆)) |
| 21 | 3 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋 ⊆ 𝑦) → 𝑆 = (SalGen‘𝑋)) |
| 22 | 21 | adantrl 716 |
. . . . . . 7
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ (∪ 𝑦 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑦)) → 𝑆 = (SalGen‘𝑋)) |
| 23 | 11 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋 ⊆ 𝑦) → 𝑋 ∈ 𝑉) |
| 24 | 23 | adantrl 716 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ (∪ 𝑦 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑦)) → 𝑋 ∈ 𝑉) |
| 25 | | simplr 769 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋 ⊆ 𝑦) → 𝑦 ∈ SAlg) |
| 26 | 25 | adantrl 716 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ (∪ 𝑦 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑦)) → 𝑦 ∈ SAlg) |
| 27 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋 ⊆ 𝑦) → 𝑋 ⊆ 𝑦) |
| 28 | 27 | adantrl 716 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ (∪ 𝑦 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑦)) → 𝑋 ⊆ 𝑦) |
| 29 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ (∪ 𝑦 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑦)) → ∪ 𝑦 = ∪
𝑋) |
| 30 | 24, 12, 26, 28, 29 | salgenss 46351 |
. . . . . . 7
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ (∪ 𝑦 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑦)) → (SalGen‘𝑋) ⊆ 𝑦) |
| 31 | 22, 30 | eqsstrd 4018 |
. . . . . 6
⊢ ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ (∪ 𝑦 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑦)) → 𝑆 ⊆ 𝑦) |
| 32 | 31 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) → ((∪ 𝑦 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦)) |
| 33 | 32 | ralrimiva 3146 |
. . . 4
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦)) |
| 34 | 20, 33 | jca 511 |
. . 3
⊢ ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦))) |
| 35 | 34 | ex 412 |
. 2
⊢ (𝜑 → ((SalGen‘𝑋) = 𝑆 → ((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦)))) |
| 36 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦))) → 𝑋 ∈ 𝑉) |
| 37 | | simprl1 1219 |
. . . 4
⊢ ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦))) → 𝑆 ∈ SAlg) |
| 38 | | simprl2 1220 |
. . . 4
⊢ ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦))) → ∪ 𝑆 = ∪
𝑋) |
| 39 | | simprl3 1221 |
. . . 4
⊢ ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦))) → 𝑋 ⊆ 𝑆) |
| 40 | | unieq 4918 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → ∪ 𝑦 = ∪
𝑤) |
| 41 | 40 | eqeq1d 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (∪ 𝑦 = ∪
𝑋 ↔ ∪ 𝑤 =
∪ 𝑋)) |
| 42 | | sseq2 4010 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑤)) |
| 43 | 41, 42 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((∪ 𝑦 = ∪
𝑋 ∧ 𝑋 ⊆ 𝑦) ↔ (∪ 𝑤 = ∪
𝑋 ∧ 𝑋 ⊆ 𝑤))) |
| 44 | | sseq2 4010 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑆 ⊆ 𝑦 ↔ 𝑆 ⊆ 𝑤)) |
| 45 | 43, 44 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → (((∪ 𝑦 = ∪
𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦) ↔ ((∪ 𝑤 = ∪
𝑋 ∧ 𝑋 ⊆ 𝑤) → 𝑆 ⊆ 𝑤))) |
| 46 | 45 | cbvralvw 3237 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦) ↔ ∀𝑤 ∈ SAlg ((∪
𝑤 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑤) → 𝑆 ⊆ 𝑤)) |
| 47 | 46 | biimpi 216 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦) → ∀𝑤 ∈ SAlg ((∪
𝑤 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑤) → 𝑆 ⊆ 𝑤)) |
| 48 | 47 | adantr 480 |
. . . . . . . . 9
⊢
((∀𝑦 ∈
SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦) ∧ 𝑤 ∈ SAlg) → ∀𝑤 ∈ SAlg ((∪ 𝑤 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑤) → 𝑆 ⊆ 𝑤)) |
| 49 | | simpr 484 |
. . . . . . . . 9
⊢
((∀𝑦 ∈
SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦) ∧ 𝑤 ∈ SAlg) → 𝑤 ∈ SAlg) |
| 50 | 48, 49 | jca 511 |
. . . . . . . 8
⊢
((∀𝑦 ∈
SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦) ∧ 𝑤 ∈ SAlg) → (∀𝑤 ∈ SAlg ((∪ 𝑤 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑤) → 𝑆 ⊆ 𝑤) ∧ 𝑤 ∈ SAlg)) |
| 51 | 50 | 3ad2antr1 1189 |
. . . . . . 7
⊢
((∀𝑦 ∈
SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦) ∧ (𝑤 ∈ SAlg ∧ ∪ 𝑤 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑤)) → (∀𝑤 ∈ SAlg ((∪
𝑤 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑤) → 𝑆 ⊆ 𝑤) ∧ 𝑤 ∈ SAlg)) |
| 52 | | 3simpc 1151 |
. . . . . . . 8
⊢ ((𝑤 ∈ SAlg ∧ ∪ 𝑤 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑤) → (∪ 𝑤 = ∪
𝑋 ∧ 𝑋 ⊆ 𝑤)) |
| 53 | 52 | adantl 481 |
. . . . . . 7
⊢
((∀𝑦 ∈
SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦) ∧ (𝑤 ∈ SAlg ∧ ∪ 𝑤 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑤)) → (∪ 𝑤 = ∪
𝑋 ∧ 𝑋 ⊆ 𝑤)) |
| 54 | | rspa 3248 |
. . . . . . 7
⊢
((∀𝑤 ∈
SAlg ((∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤) → 𝑆 ⊆ 𝑤) ∧ 𝑤 ∈ SAlg) → ((∪ 𝑤 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑤) → 𝑆 ⊆ 𝑤)) |
| 55 | 51, 53, 54 | sylc 65 |
. . . . . 6
⊢
((∀𝑦 ∈
SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦) ∧ (𝑤 ∈ SAlg ∧ ∪ 𝑤 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑤)) → 𝑆 ⊆ 𝑤) |
| 56 | 55 | adantll 714 |
. . . . 5
⊢ ((((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦)) ∧ (𝑤 ∈ SAlg ∧ ∪ 𝑤 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑤)) → 𝑆 ⊆ 𝑤) |
| 57 | 56 | adantll 714 |
. . . 4
⊢ (((𝜑 ∧ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦))) ∧ (𝑤 ∈ SAlg ∧ ∪ 𝑤 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑤)) → 𝑆 ⊆ 𝑤) |
| 58 | 36, 37, 38, 39, 57 | issalgend 46353 |
. . 3
⊢ ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦))) → (SalGen‘𝑋) = 𝑆) |
| 59 | 58 | ex 412 |
. 2
⊢ (𝜑 → (((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦)) → (SalGen‘𝑋) = 𝑆)) |
| 60 | 35, 59 | impbid 212 |
1
⊢ (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 =
∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪
𝑦 = ∪ 𝑋
∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦)))) |