Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsalgen2 Structured version   Visualization version   GIF version

Theorem dfsalgen2 46262
Description: Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
dfsalgen2.1 (𝜑𝑋𝑉)
Assertion
Ref Expression
dfsalgen2 (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
Distinct variable groups:   𝑦,𝑆   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem dfsalgen2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . 8 ((SalGen‘𝑋) = 𝑆 → (SalGen‘𝑋) = 𝑆)
21eqcomd 2746 . . . . . . 7 ((SalGen‘𝑋) = 𝑆𝑆 = (SalGen‘𝑋))
32adantl 481 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 = (SalGen‘𝑋))
4 dfsalgen2.1 . . . . . . . 8 (𝜑𝑋𝑉)
5 salgencl 46253 . . . . . . . 8 (𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)
64, 5syl 17 . . . . . . 7 (𝜑 → (SalGen‘𝑋) ∈ SAlg)
76adantr 480 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) ∈ SAlg)
83, 7eqeltrd 2844 . . . . 5 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 ∈ SAlg)
9 unieq 4942 . . . . . . 7 ((SalGen‘𝑋) = 𝑆 (SalGen‘𝑋) = 𝑆)
109adantl 481 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑆)
114adantr 480 . . . . . . 7 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋𝑉)
12 eqid 2740 . . . . . . 7 (SalGen‘𝑋) = (SalGen‘𝑋)
13 eqid 2740 . . . . . . 7 𝑋 = 𝑋
1411, 12, 13salgenuni 46258 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑋)
1510, 14eqtr3d 2782 . . . . 5 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑆 = 𝑋)
1612sssalgen 46256 . . . . . . 7 (𝑋𝑉𝑋 ⊆ (SalGen‘𝑋))
1711, 16syl 17 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋 ⊆ (SalGen‘𝑋))
18 simpr 484 . . . . . 6 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (SalGen‘𝑋) = 𝑆)
1917, 18sseqtrd 4049 . . . . 5 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → 𝑋𝑆)
208, 15, 193jca 1128 . . . 4 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → (𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆))
213ad2antrr 725 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑆 = (SalGen‘𝑋))
2221adantrl 715 . . . . . . 7 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑆 = (SalGen‘𝑋))
2311ad2antrr 725 . . . . . . . . 9 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑋𝑉)
2423adantrl 715 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑋𝑉)
25 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑦 ∈ SAlg)
2625adantrl 715 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑦 ∈ SAlg)
27 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ 𝑋𝑦) → 𝑋𝑦)
2827adantrl 715 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑋𝑦)
29 simprl 770 . . . . . . . 8 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑦 = 𝑋)
3024, 12, 26, 28, 29salgenss 46257 . . . . . . 7 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → (SalGen‘𝑋) ⊆ 𝑦)
3122, 30eqsstrd 4047 . . . . . 6 ((((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) ∧ ( 𝑦 = 𝑋𝑋𝑦)) → 𝑆𝑦)
3231ex 412 . . . . 5 (((𝜑 ∧ (SalGen‘𝑋) = 𝑆) ∧ 𝑦 ∈ SAlg) → (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))
3332ralrimiva 3152 . . . 4 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))
3420, 33jca 511 . . 3 ((𝜑 ∧ (SalGen‘𝑋) = 𝑆) → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦)))
3534ex 412 . 2 (𝜑 → ((SalGen‘𝑋) = 𝑆 → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
364adantr 480 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑋𝑉)
37 simprl1 1218 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑆 ∈ SAlg)
38 simprl2 1219 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑆 = 𝑋)
39 simprl3 1220 . . . 4 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → 𝑋𝑆)
40 unieq 4942 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 𝑦 = 𝑤)
4140eqeq1d 2742 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ( 𝑦 = 𝑋 𝑤 = 𝑋))
42 sseq2 4035 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝑋𝑦𝑋𝑤))
4341, 42anbi12d 631 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (( 𝑦 = 𝑋𝑋𝑦) ↔ ( 𝑤 = 𝑋𝑋𝑤)))
44 sseq2 4035 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑆𝑦𝑆𝑤))
4543, 44imbi12d 344 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ↔ (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤)))
4645cbvralvw 3243 . . . . . . . . . . 11 (∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ↔ ∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
4746biimpi 216 . . . . . . . . . 10 (∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) → ∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
4847adantr 480 . . . . . . . . 9 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ 𝑤 ∈ SAlg) → ∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
49 simpr 484 . . . . . . . . 9 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ 𝑤 ∈ SAlg) → 𝑤 ∈ SAlg)
5048, 49jca 511 . . . . . . . 8 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ 𝑤 ∈ SAlg) → (∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤) ∧ 𝑤 ∈ SAlg))
51503ad2antr1 1188 . . . . . . 7 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → (∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤) ∧ 𝑤 ∈ SAlg))
52 3simpc 1150 . . . . . . . 8 ((𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤) → ( 𝑤 = 𝑋𝑋𝑤))
5352adantl 481 . . . . . . 7 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → ( 𝑤 = 𝑋𝑋𝑤))
54 rspa 3254 . . . . . . 7 ((∀𝑤 ∈ SAlg (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤) ∧ 𝑤 ∈ SAlg) → (( 𝑤 = 𝑋𝑋𝑤) → 𝑆𝑤))
5551, 53, 54sylc 65 . . . . . 6 ((∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → 𝑆𝑤)
5655adantll 713 . . . . 5 ((((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦)) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → 𝑆𝑤)
5756adantll 713 . . . 4 (((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) ∧ (𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤)) → 𝑆𝑤)
5836, 37, 38, 39, 57issalgend 46259 . . 3 ((𝜑 ∧ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))) → (SalGen‘𝑋) = 𝑆)
5958ex 412 . 2 (𝜑 → (((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦)) → (SalGen‘𝑋) = 𝑆))
6035, 59impbid 212 1 (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆) ∧ ∀𝑦 ∈ SAlg (( 𝑦 = 𝑋𝑋𝑦) → 𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976   cuni 4931  cfv 6573  SAlgcsalg 46229  SalGencsalgen 46233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-salg 46230  df-salgen 46234
This theorem is referenced by:  unisalgen2  46275
  Copyright terms: Public domain W3C validator