Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-sca | Structured version Visualization version GIF version |
Description: Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form scaid 17015 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-sca | ⊢ Scalar = Slot 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csca 16955 | . 2 class Scalar | |
2 | c5 12023 | . . 3 class 5 | |
3 | 2 | cslot 16872 | . 2 class Slot 5 |
4 | 1, 3 | wceq 1542 | 1 wff Scalar = Slot 5 |
Colors of variables: wff setvar class |
This definition is referenced by: scandx 17014 scaid 17015 mgpscaOLD 19719 opsrscaOLD 21251 tngscaOLD 23796 mnringscadOLD 41803 |
Copyright terms: Public domain | W3C validator |