| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sca | Structured version Visualization version GIF version | ||
| Description: Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form scaid 17359 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-sca | ⊢ Scalar = Slot 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csca 17300 | . 2 class Scalar | |
| 2 | c5 12324 | . . 3 class 5 | |
| 3 | 2 | cslot 17218 | . 2 class Slot 5 |
| 4 | 1, 3 | wceq 1540 | 1 wff Scalar = Slot 5 |
| Colors of variables: wff setvar class |
| This definition is referenced by: scandx 17358 scaid 17359 opsrscaOLD 22078 tngscaOLD 24663 mnringscadOLD 44242 |
| Copyright terms: Public domain | W3C validator |