Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringscadOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mnringscad 41702 as of 1-Nov-2024. The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mnringscad.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringscad.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
mnringscad.3 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
Ref | Expression |
---|---|
mnringscadOLD | ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringscad.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
2 | fvex 6766 | . . 3 ⊢ (Base‘𝑀) ∈ V | |
3 | eqid 2739 | . . . 4 ⊢ (𝑅 freeLMod (Base‘𝑀)) = (𝑅 freeLMod (Base‘𝑀)) | |
4 | 3 | frlmsca 20845 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ (Base‘𝑀) ∈ V) → 𝑅 = (Scalar‘(𝑅 freeLMod (Base‘𝑀)))) |
5 | 1, 2, 4 | sylancl 589 | . 2 ⊢ (𝜑 → 𝑅 = (Scalar‘(𝑅 freeLMod (Base‘𝑀)))) |
6 | mnringscad.1 | . . 3 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
7 | df-sca 16879 | . . 3 ⊢ Scalar = Slot 5 | |
8 | 5nn 11964 | . . 3 ⊢ 5 ∈ ℕ | |
9 | 3re 11958 | . . . . 5 ⊢ 3 ∈ ℝ | |
10 | 3lt5 12056 | . . . . 5 ⊢ 3 < 5 | |
11 | 9, 10 | gtneii 10992 | . . . 4 ⊢ 5 ≠ 3 |
12 | mulrndx 16904 | . . . 4 ⊢ (.r‘ndx) = 3 | |
13 | 11, 12 | neeqtrri 3017 | . . 3 ⊢ 5 ≠ (.r‘ndx) |
14 | eqid 2739 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
15 | mnringscad.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
16 | 6, 7, 8, 13, 14, 3, 1, 15 | mnringnmulrdOLD 41690 | . 2 ⊢ (𝜑 → (Scalar‘(𝑅 freeLMod (Base‘𝑀))) = (Scalar‘𝐹)) |
17 | 5, 16 | eqtrd 2779 | 1 ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ‘cfv 6415 (class class class)co 7252 3c3 11934 5c5 11936 ndxcnx 16797 Basecbs 16815 .rcmulr 16864 Scalarcsca 16866 freeLMod cfrlm 20838 MndRing cmnring 41686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-ixp 8621 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-sup 9106 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-uz 12487 df-fz 13144 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-mulr 16877 df-sca 16879 df-vsca 16880 df-ip 16881 df-tset 16882 df-ple 16883 df-ds 16885 df-hom 16887 df-cco 16888 df-prds 17050 df-pws 17052 df-sra 20324 df-rgmod 20325 df-dsmm 20824 df-frlm 20839 df-mnring 41687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |