Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-vsca | Structured version Visualization version GIF version |
Description: Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df-vsca | ⊢ ·𝑠 = Slot 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvsca 16806 | . 2 class ·𝑠 | |
2 | c6 11889 | . . 3 class 6 | |
3 | 2 | cslot 16734 | . 2 class Slot 6 |
4 | 1, 3 | wceq 1543 | 1 wff ·𝑠 = Slot 6 |
Colors of variables: wff setvar class |
This definition is referenced by: vscandx 16858 vscaid 16859 psrvscafval 20915 opsrvsca 21010 tngvsca 23544 ttgvsca 26971 resvvsca 31252 mendvscafval 40718 mnringvscad 41516 |
Copyright terms: Public domain | W3C validator |