Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scaid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of scalar df-sca 17006. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
scaid | ⊢ Scalar = Slot (Scalar‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sca 17006 | . 2 ⊢ Scalar = Slot 5 | |
2 | 5nn 12087 | . 2 ⊢ 5 ∈ ℕ | |
3 | 1, 2 | ndxid 16926 | 1 ⊢ Scalar = Slot (Scalar‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ‘cfv 6447 5c5 12059 Slot cslot 16910 ndxcnx 16922 Scalarcsca 16993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-1cn 10957 ax-addcl 10959 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-slot 16911 df-ndx 16923 df-sca 17006 |
This theorem is referenced by: lmodsca 17066 ipssca 17078 resssca 17081 phlsca 17087 prdssca 17195 imassca 17258 mgpsca 19756 rmodislmod 20219 rmodislmodOLD 20220 srasca 20475 srascaOLD 20476 zlmsca 20754 psrsca 21186 opsrsca 21288 psr1sca2 21450 ply1sca2 21453 matsca 21590 matscaOLD 21591 tngsca 23833 resvsca 31557 bj-isrvec 35493 algsca 41030 mendsca 41038 mnringscad 41864 |
Copyright terms: Public domain | W3C validator |