Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issconn Structured version   Visualization version   GIF version

Theorem issconn 35211
Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
issconn (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
Distinct variable group:   𝑓,𝐽

Proof of Theorem issconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . 3 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
2 fveq2 6907 . . . . 5 (𝑗 = 𝐽 → ( ≃ph𝑗) = ( ≃ph𝐽))
32breqd 5159 . . . 4 (𝑗 = 𝐽 → (𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}) ↔ 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
43imbi2d 340 . . 3 (𝑗 = 𝐽 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
51, 4raleqbidv 3344 . 2 (𝑗 = 𝐽 → (∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
6 df-sconn 35207 . 2 SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}))}
75, 6elrab2 3698 1 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  {csn 4631   class class class wbr 5148   × cxp 5687  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  [,]cicc 13387   Cn ccn 23248  IIcii 24915  phcphtpc 25015  PConncpconn 35204  SConncsconn 35205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-sconn 35207
This theorem is referenced by:  sconnpconn  35212  sconnpht  35214  sconnpi1  35224  txsconn  35226  cvxsconn  35228
  Copyright terms: Public domain W3C validator