Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issconn Structured version   Visualization version   GIF version

Theorem issconn 35194
Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
issconn (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
Distinct variable group:   𝑓,𝐽

Proof of Theorem issconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . 3 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
2 fveq2 6920 . . . . 5 (𝑗 = 𝐽 → ( ≃ph𝑗) = ( ≃ph𝐽))
32breqd 5177 . . . 4 (𝑗 = 𝐽 → (𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}) ↔ 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
43imbi2d 340 . . 3 (𝑗 = 𝐽 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
51, 4raleqbidv 3354 . 2 (𝑗 = 𝐽 → (∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
6 df-sconn 35190 . 2 SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}))}
75, 6elrab2 3711 1 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {csn 4648   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  [,]cicc 13410   Cn ccn 23253  IIcii 24920  phcphtpc 25020  PConncpconn 35187  SConncsconn 35188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-sconn 35190
This theorem is referenced by:  sconnpconn  35195  sconnpht  35197  sconnpi1  35207  txsconn  35209  cvxsconn  35211
  Copyright terms: Public domain W3C validator