|   | Mathbox for Mario Carneiro | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issconn | Structured version Visualization version GIF version | ||
| Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| issconn | ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq2 7439 | . . 3 ⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) | |
| 2 | fveq2 6906 | . . . . 5 ⊢ (𝑗 = 𝐽 → ( ≃ph‘𝑗) = ( ≃ph‘𝐽)) | |
| 3 | 2 | breqd 5154 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}) ↔ 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}))) | 
| 4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝐽 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | 
| 5 | 1, 4 | raleqbidv 3346 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | 
| 6 | df-sconn 35227 | . 2 ⊢ SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} | |
| 7 | 5, 6 | elrab2 3695 | 1 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {csn 4626 class class class wbr 5143 × cxp 5683 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 [,]cicc 13390 Cn ccn 23232 IIcii 24901 ≃phcphtpc 25001 PConncpconn 35224 SConncsconn 35225 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-sconn 35227 | 
| This theorem is referenced by: sconnpconn 35232 sconnpht 35234 sconnpi1 35244 txsconn 35246 cvxsconn 35248 | 
| Copyright terms: Public domain | W3C validator |