Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issconn | Structured version Visualization version GIF version |
Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
issconn | ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7164 | . . 3 ⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) | |
2 | fveq2 6663 | . . . . 5 ⊢ (𝑗 = 𝐽 → ( ≃ph‘𝑗) = ( ≃ph‘𝐽)) | |
3 | 2 | breqd 5047 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}) ↔ 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}))) |
4 | 3 | imbi2d 344 | . . 3 ⊢ (𝑗 = 𝐽 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
5 | 1, 4 | raleqbidv 3319 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
6 | df-sconn 32713 | . 2 ⊢ SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} | |
7 | 5, 6 | elrab2 3607 | 1 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 {csn 4525 class class class wbr 5036 × cxp 5526 ‘cfv 6340 (class class class)co 7156 0cc0 10588 1c1 10589 [,]cicc 12795 Cn ccn 21938 IIcii 23590 ≃phcphtpc 23684 PConncpconn 32710 SConncsconn 32711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-ov 7159 df-sconn 32713 |
This theorem is referenced by: sconnpconn 32718 sconnpht 32720 sconnpi1 32730 txsconn 32732 cvxsconn 32734 |
Copyright terms: Public domain | W3C validator |