Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issconn Structured version   Visualization version   GIF version

Theorem issconn 34212
Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
issconn (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
Distinct variable group:   𝑓,𝐽

Proof of Theorem issconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7416 . . 3 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
2 fveq2 6891 . . . . 5 (𝑗 = 𝐽 → ( ≃ph𝑗) = ( ≃ph𝐽))
32breqd 5159 . . . 4 (𝑗 = 𝐽 → (𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}) ↔ 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
43imbi2d 340 . . 3 (𝑗 = 𝐽 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
51, 4raleqbidv 3342 . 2 (𝑗 = 𝐽 → (∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
6 df-sconn 34208 . 2 SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}))}
75, 6elrab2 3686 1 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  {csn 4628   class class class wbr 5148   × cxp 5674  cfv 6543  (class class class)co 7408  0cc0 11109  1c1 11110  [,]cicc 13326   Cn ccn 22727  IIcii 24390  phcphtpc 24484  PConncpconn 34205  SConncsconn 34206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-sconn 34208
This theorem is referenced by:  sconnpconn  34213  sconnpht  34215  sconnpi1  34225  txsconn  34227  cvxsconn  34229
  Copyright terms: Public domain W3C validator