Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issconn Structured version   Visualization version   GIF version

Theorem issconn 35253
Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
issconn (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
Distinct variable group:   𝑓,𝐽

Proof of Theorem issconn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . 3 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
2 fveq2 6881 . . . . 5 (𝑗 = 𝐽 → ( ≃ph𝑗) = ( ≃ph𝐽))
32breqd 5135 . . . 4 (𝑗 = 𝐽 → (𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}) ↔ 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})))
43imbi2d 340 . . 3 (𝑗 = 𝐽 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
51, 4raleqbidv 3329 . 2 (𝑗 = 𝐽 → (∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
6 df-sconn 35249 . 2 SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}))}
75, 6elrab2 3679 1 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  {csn 4606   class class class wbr 5124   × cxp 5657  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  [,]cicc 13370   Cn ccn 23167  IIcii 24824  phcphtpc 24924  PConncpconn 35246  SConncsconn 35247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-sconn 35249
This theorem is referenced by:  sconnpconn  35254  sconnpht  35256  sconnpi1  35266  txsconn  35268  cvxsconn  35270
  Copyright terms: Public domain W3C validator