![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issconn | Structured version Visualization version GIF version |
Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
issconn | ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7417 | . . 3 ⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) | |
2 | fveq2 6892 | . . . . 5 ⊢ (𝑗 = 𝐽 → ( ≃ph‘𝑗) = ( ≃ph‘𝐽)) | |
3 | 2 | breqd 5160 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}) ↔ 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}))) |
4 | 3 | imbi2d 341 | . . 3 ⊢ (𝑗 = 𝐽 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
5 | 1, 4 | raleqbidv 3343 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
6 | df-sconn 34213 | . 2 ⊢ SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} | |
7 | 5, 6 | elrab2 3687 | 1 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {csn 4629 class class class wbr 5149 × cxp 5675 ‘cfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 [,]cicc 13327 Cn ccn 22728 IIcii 24391 ≃phcphtpc 24485 PConncpconn 34210 SConncsconn 34211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-sconn 34213 |
This theorem is referenced by: sconnpconn 34218 sconnpht 34220 sconnpi1 34230 txsconn 34232 cvxsconn 34234 |
Copyright terms: Public domain | W3C validator |