Detailed syntax breakdown of Definition df-scut
| Step | Hyp | Ref
| Expression |
| 1 | | cscut 27828 |
. 2
class
|s |
| 2 | | va |
. . 3
setvar 𝑎 |
| 3 | | vb |
. . 3
setvar 𝑏 |
| 4 | | csur 27685 |
. . . 4
class No |
| 5 | 4 | cpw 4599 |
. . 3
class 𝒫
No |
| 6 | | csslt 27826 |
. . . 4
class
<<s |
| 7 | 2 | cv 1538 |
. . . . 5
class 𝑎 |
| 8 | 7 | csn 4625 |
. . . 4
class {𝑎} |
| 9 | 6, 8 | cima 5687 |
. . 3
class (
<<s “ {𝑎}) |
| 10 | | vx |
. . . . . . 7
setvar 𝑥 |
| 11 | 10 | cv 1538 |
. . . . . 6
class 𝑥 |
| 12 | | cbday 27687 |
. . . . . 6
class bday |
| 13 | 11, 12 | cfv 6560 |
. . . . 5
class ( bday ‘𝑥) |
| 14 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 15 | 14 | cv 1538 |
. . . . . . . . . . 11
class 𝑦 |
| 16 | 15 | csn 4625 |
. . . . . . . . . 10
class {𝑦} |
| 17 | 7, 16, 6 | wbr 5142 |
. . . . . . . . 9
wff 𝑎 <<s {𝑦} |
| 18 | 3 | cv 1538 |
. . . . . . . . . 10
class 𝑏 |
| 19 | 16, 18, 6 | wbr 5142 |
. . . . . . . . 9
wff {𝑦} <<s 𝑏 |
| 20 | 17, 19 | wa 395 |
. . . . . . . 8
wff (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏) |
| 21 | 20, 14, 4 | crab 3435 |
. . . . . . 7
class {𝑦 ∈
No ∣ (𝑎
<<s {𝑦} ∧ {𝑦} <<s 𝑏)} |
| 22 | 12, 21 | cima 5687 |
. . . . . 6
class ( bday “ {𝑦 ∈ No
∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) |
| 23 | 22 | cint 4945 |
. . . . 5
class ∩ ( bday “ {𝑦 ∈
No ∣ (𝑎
<<s {𝑦} ∧ {𝑦} <<s 𝑏)}) |
| 24 | 13, 23 | wceq 1539 |
. . . 4
wff ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No
∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) |
| 25 | 24, 10, 21 | crio 7388 |
. . 3
class
(℩𝑥
∈ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝑎
<<s {𝑦} ∧ {𝑦} <<s 𝑏)})) |
| 26 | 2, 3, 5, 9, 25 | cmpo 7434 |
. 2
class (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝑎
<<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) |
| 27 | 1, 26 | wceq 1539 |
1
wff |s =
(𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝑎
<<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) |