MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-scut Structured version   Visualization version   GIF version

Definition df-scut 27843
Description: Define the cut operator on surreal numbers. This operator, which Conway takes as the primitive operator over surreals, picks the surreal lying between two sets of surreals of minimal birthday. Definition from [Gonshor] p. 7. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
df-scut |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
Distinct variable group:   𝑎,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-scut
StepHypRef Expression
1 cscut 27842 . 2 class |s
2 va . . 3 setvar 𝑎
3 vb . . 3 setvar 𝑏
4 csur 27699 . . . 4 class No
54cpw 4605 . . 3 class 𝒫 No
6 csslt 27840 . . . 4 class <<s
72cv 1536 . . . . 5 class 𝑎
87csn 4631 . . . 4 class {𝑎}
96, 8cima 5692 . . 3 class ( <<s “ {𝑎})
10 vx . . . . . . 7 setvar 𝑥
1110cv 1536 . . . . . 6 class 𝑥
12 cbday 27701 . . . . . 6 class bday
1311, 12cfv 6563 . . . . 5 class ( bday 𝑥)
14 vy . . . . . . . . . . . 12 setvar 𝑦
1514cv 1536 . . . . . . . . . . 11 class 𝑦
1615csn 4631 . . . . . . . . . 10 class {𝑦}
177, 16, 6wbr 5148 . . . . . . . . 9 wff 𝑎 <<s {𝑦}
183cv 1536 . . . . . . . . . 10 class 𝑏
1916, 18, 6wbr 5148 . . . . . . . . 9 wff {𝑦} <<s 𝑏
2017, 19wa 395 . . . . . . . 8 wff (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)
2120, 14, 4crab 3433 . . . . . . 7 class {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}
2212, 21cima 5692 . . . . . 6 class ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})
2322cint 4951 . . . . 5 class ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})
2413, 23wceq 1537 . . . 4 wff ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})
2524, 10, 21crio 7387 . . 3 class (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))
262, 3, 5, 9, 25cmpo 7433 . 2 class (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
271, 26wceq 1537 1 wff |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
Colors of variables: wff setvar class
This definition is referenced by:  scutval  27860  dmscut  27871  scutf  27872
  Copyright terms: Public domain W3C validator