MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-scut Structured version   Visualization version   GIF version

Definition df-scut 27746
Description: Define the cut operator on surreal numbers. This operator, which Conway takes as the primitive operator over surreals, picks the surreal lying between two sets of surreals of minimal birthday. Definition from [Gonshor] p. 7. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
df-scut |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
Distinct variable group:   𝑎,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-scut
StepHypRef Expression
1 cscut 27745 . 2 class |s
2 va . . 3 setvar 𝑎
3 vb . . 3 setvar 𝑏
4 csur 27603 . . . 4 class No
54cpw 4603 . . 3 class 𝒫 No
6 csslt 27743 . . . 4 class <<s
72cv 1532 . . . . 5 class 𝑎
87csn 4629 . . . 4 class {𝑎}
96, 8cima 5680 . . 3 class ( <<s “ {𝑎})
10 vx . . . . . . 7 setvar 𝑥
1110cv 1532 . . . . . 6 class 𝑥
12 cbday 27605 . . . . . 6 class bday
1311, 12cfv 6547 . . . . 5 class ( bday 𝑥)
14 vy . . . . . . . . . . . 12 setvar 𝑦
1514cv 1532 . . . . . . . . . . 11 class 𝑦
1615csn 4629 . . . . . . . . . 10 class {𝑦}
177, 16, 6wbr 5148 . . . . . . . . 9 wff 𝑎 <<s {𝑦}
183cv 1532 . . . . . . . . . 10 class 𝑏
1916, 18, 6wbr 5148 . . . . . . . . 9 wff {𝑦} <<s 𝑏
2017, 19wa 394 . . . . . . . 8 wff (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)
2120, 14, 4crab 3419 . . . . . . 7 class {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}
2212, 21cima 5680 . . . . . 6 class ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})
2322cint 4949 . . . . 5 class ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})
2413, 23wceq 1533 . . . 4 wff ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})
2524, 10, 21crio 7372 . . 3 class (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))
262, 3, 5, 9, 25cmpo 7419 . 2 class (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
271, 26wceq 1533 1 wff |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
Colors of variables: wff setvar class
This definition is referenced by:  scutval  27763  dmscut  27774  scutf  27775
  Copyright terms: Public domain W3C validator