MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-scut Structured version   Visualization version   GIF version

Definition df-scut 27694
Description: Define the cut operator on surreal numbers. This operator, which Conway takes as the primitive operator over surreals, picks the surreal lying between two sets of surreals of minimal birthday. Definition from [Gonshor] p. 7. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
df-scut |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
Distinct variable group:   𝑎,𝑏,𝑥,𝑦

Detailed syntax breakdown of Definition df-scut
StepHypRef Expression
1 cscut 27693 . 2 class |s
2 va . . 3 setvar 𝑎
3 vb . . 3 setvar 𝑏
4 csur 27549 . . . 4 class No
54cpw 4551 . . 3 class 𝒫 No
6 csslt 27691 . . . 4 class <<s
72cv 1539 . . . . 5 class 𝑎
87csn 4577 . . . 4 class {𝑎}
96, 8cima 5622 . . 3 class ( <<s “ {𝑎})
10 vx . . . . . . 7 setvar 𝑥
1110cv 1539 . . . . . 6 class 𝑥
12 cbday 27551 . . . . . 6 class bday
1311, 12cfv 6482 . . . . 5 class ( bday 𝑥)
14 vy . . . . . . . . . . . 12 setvar 𝑦
1514cv 1539 . . . . . . . . . . 11 class 𝑦
1615csn 4577 . . . . . . . . . 10 class {𝑦}
177, 16, 6wbr 5092 . . . . . . . . 9 wff 𝑎 <<s {𝑦}
183cv 1539 . . . . . . . . . 10 class 𝑏
1916, 18, 6wbr 5092 . . . . . . . . 9 wff {𝑦} <<s 𝑏
2017, 19wa 395 . . . . . . . 8 wff (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)
2120, 14, 4crab 3394 . . . . . . 7 class {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}
2212, 21cima 5622 . . . . . 6 class ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})
2322cint 4896 . . . . 5 class ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})
2413, 23wceq 1540 . . . 4 wff ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})
2524, 10, 21crio 7305 . . 3 class (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))
262, 3, 5, 9, 25cmpo 7351 . 2 class (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
271, 26wceq 1540 1 wff |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
Colors of variables: wff setvar class
This definition is referenced by:  scutval  27711  dmscut  27722  scutf  27723
  Copyright terms: Public domain W3C validator