MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutf Structured version   Visualization version   GIF version

Theorem scutf 27741
Description: Functionality statement for the surreal cut operator. (Contributed by Scott Fenton, 15-Dec-2021.)
Assertion
Ref Expression
scutf |s : <<s ⟶ No

Proof of Theorem scutf
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scut 27712 . . . 4 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
21mpofun 7477 . . 3 Fun |s
3 dmscut 27740 . . 3 dom |s = <<s
4 df-fn 6489 . . 3 ( |s Fn <<s ↔ (Fun |s ∧ dom |s = <<s ))
52, 3, 4mpbir2an 711 . 2 |s Fn <<s
61rnmpo 7486 . . 3 ran |s = {𝑧 ∣ ∃𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))}
7 vex 3442 . . . . . . . . . 10 𝑎 ∈ V
8 vex 3442 . . . . . . . . . 10 𝑏 ∈ V
97, 8elimasn 6045 . . . . . . . . 9 (𝑏 ∈ ( <<s “ {𝑎}) ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
10 df-br 5096 . . . . . . . . 9 (𝑎 <<s 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
119, 10bitr4i 278 . . . . . . . 8 (𝑏 ∈ ( <<s “ {𝑎}) ↔ 𝑎 <<s 𝑏)
12 scutval 27729 . . . . . . . . 9 (𝑎 <<s 𝑏 → (𝑎 |s 𝑏) = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
13 scutcl 27731 . . . . . . . . 9 (𝑎 <<s 𝑏 → (𝑎 |s 𝑏) ∈ No )
1412, 13eqeltrrd 2829 . . . . . . . 8 (𝑎 <<s 𝑏 → (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ No )
1511, 14sylbi 217 . . . . . . 7 (𝑏 ∈ ( <<s “ {𝑎}) → (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ No )
16 eleq1a 2823 . . . . . . 7 ((𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ No → (𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) → 𝑧 No ))
1715, 16syl 17 . . . . . 6 (𝑏 ∈ ( <<s “ {𝑎}) → (𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) → 𝑧 No ))
1817adantl 481 . . . . 5 ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) → (𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) → 𝑧 No ))
1918rexlimivv 3171 . . . 4 (∃𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) → 𝑧 No )
2019abssi 4023 . . 3 {𝑧 ∣ ∃𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))} ⊆ No
216, 20eqsstri 3984 . 2 ran |s ⊆ No
22 df-f 6490 . 2 ( |s : <<s ⟶ No ↔ ( |s Fn <<s ∧ ran |s ⊆ No ))
235, 21, 22mpbir2an 711 1 |s : <<s ⟶ No
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3396  wss 3905  𝒫 cpw 4553  {csn 4579  cop 4585   cint 4899   class class class wbr 5095  dom cdm 5623  ran crn 5624  cima 5626  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  crio 7309  (class class class)co 7353   No csur 27567   bday cbday 27569   <<s csslt 27709   |s cscut 27711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1o 8395  df-2o 8396  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712
This theorem is referenced by:  madeval  27780  madeval2  27781  scutfo  27837  madefi  27845
  Copyright terms: Public domain W3C validator