MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutf Structured version   Visualization version   GIF version

Theorem scutf 27775
Description: Functionality statement for the surreal cut operator. (Contributed by Scott Fenton, 15-Dec-2021.)
Assertion
Ref Expression
scutf |s : <<s ⟶ No

Proof of Theorem scutf
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-scut 27746 . . . 4 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
21mpofun 7542 . . 3 Fun |s
3 dmscut 27774 . . 3 dom |s = <<s
4 df-fn 6550 . . 3 ( |s Fn <<s ↔ (Fun |s ∧ dom |s = <<s ))
52, 3, 4mpbir2an 709 . 2 |s Fn <<s
61rnmpo 7552 . . 3 ran |s = {𝑧 ∣ ∃𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))}
7 vex 3467 . . . . . . . . . 10 𝑎 ∈ V
8 vex 3467 . . . . . . . . . 10 𝑏 ∈ V
97, 8elimasn 6093 . . . . . . . . 9 (𝑏 ∈ ( <<s “ {𝑎}) ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
10 df-br 5149 . . . . . . . . 9 (𝑎 <<s 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
119, 10bitr4i 277 . . . . . . . 8 (𝑏 ∈ ( <<s “ {𝑎}) ↔ 𝑎 <<s 𝑏)
12 scutval 27763 . . . . . . . . 9 (𝑎 <<s 𝑏 → (𝑎 |s 𝑏) = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
13 scutcl 27765 . . . . . . . . 9 (𝑎 <<s 𝑏 → (𝑎 |s 𝑏) ∈ No )
1412, 13eqeltrrd 2826 . . . . . . . 8 (𝑎 <<s 𝑏 → (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ No )
1511, 14sylbi 216 . . . . . . 7 (𝑏 ∈ ( <<s “ {𝑎}) → (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ No )
16 eleq1a 2820 . . . . . . 7 ((𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ No → (𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) → 𝑧 No ))
1715, 16syl 17 . . . . . 6 (𝑏 ∈ ( <<s “ {𝑎}) → (𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) → 𝑧 No ))
1817adantl 480 . . . . 5 ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) → (𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) → 𝑧 No ))
1918rexlimivv 3190 . . . 4 (∃𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) → 𝑧 No )
2019abssi 4064 . . 3 {𝑧 ∣ ∃𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})𝑧 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))} ⊆ No
216, 20eqsstri 4012 . 2 ran |s ⊆ No
22 df-f 6551 . 2 ( |s : <<s ⟶ No ↔ ( |s Fn <<s ∧ ran |s ⊆ No ))
235, 21, 22mpbir2an 709 1 |s : <<s ⟶ No
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wrex 3060  {crab 3419  wss 3945  𝒫 cpw 4603  {csn 4629  cop 4635   cint 4949   class class class wbr 5148  dom cdm 5677  ran crn 5678  cima 5680  Fun wfun 6541   Fn wfn 6542  wf 6543  cfv 6547  crio 7372  (class class class)co 7417   No csur 27603   bday cbday 27605   <<s csslt 27743   |s cscut 27745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-1o 8485  df-2o 8486  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27744  df-scut 27746
This theorem is referenced by:  madeval  27809  madeval2  27810  scutfo  27860
  Copyright terms: Public domain W3C validator