Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmscut Structured version   Visualization version   GIF version

Theorem dmscut 33932
Description: The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
dmscut dom |s = <<s

Proof of Theorem dmscut
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 7354 . 2 dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
2 df-scut 33905 . . . 4 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
3 df-mpo 7260 . . . 4 (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
42, 3eqtri 2766 . . 3 |s = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
54dmeqi 5802 . 2 dom |s = dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
6 df-sslt 33903 . . . . 5 <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦)}
76relopabiv 5719 . . . 4 Rel <<s
8 19.42v 1958 . . . . . 6 (∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) ↔ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
9 ssltss1 33910 . . . . . . . . 9 (𝑎 <<s 𝑏𝑎 No )
10 velpw 4535 . . . . . . . . 9 (𝑎 ∈ 𝒫 No 𝑎 No )
119, 10sylibr 233 . . . . . . . 8 (𝑎 <<s 𝑏𝑎 ∈ 𝒫 No )
1211pm4.71ri 560 . . . . . . 7 (𝑎 <<s 𝑏 ↔ (𝑎 ∈ 𝒫 No 𝑎 <<s 𝑏))
13 vex 3426 . . . . . . . . . 10 𝑎 ∈ V
14 vex 3426 . . . . . . . . . 10 𝑏 ∈ V
1513, 14elimasn 5986 . . . . . . . . 9 (𝑏 ∈ ( <<s “ {𝑎}) ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
16 df-br 5071 . . . . . . . . 9 (𝑎 <<s 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
1715, 16bitr4i 277 . . . . . . . 8 (𝑏 ∈ ( <<s “ {𝑎}) ↔ 𝑎 <<s 𝑏)
1817anbi2i 622 . . . . . . 7 ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ↔ (𝑎 ∈ 𝒫 No 𝑎 <<s 𝑏))
19 riotaex 7216 . . . . . . . . 9 (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ V
2019isseti 3437 . . . . . . . 8 𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))
2120biantru 529 . . . . . . 7 ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ↔ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
2212, 18, 213bitr2i 298 . . . . . 6 (𝑎 <<s 𝑏 ↔ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
238, 22, 163bitr2ri 299 . . . . 5 (⟨𝑎, 𝑏⟩ ∈ <<s ↔ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
2423a1i 11 . . . 4 (⊤ → (⟨𝑎, 𝑏⟩ ∈ <<s ↔ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))))
257, 24opabbi2dv 5747 . . 3 (⊤ → <<s = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))})
2625mptru 1546 . 2 <<s = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
271, 5, 263eqtr4i 2776 1 dom |s = <<s
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wtru 1540  wex 1783  wcel 2108  wral 3063  {crab 3067  wss 3883  𝒫 cpw 4530  {csn 4558  cop 4564   cint 4876   class class class wbr 5070  {copab 5132  dom cdm 5580  cima 5583  cfv 6418  crio 7211  {coprab 7256  cmpo 7257   No csur 33770   <s cslt 33771   bday cbday 33772   <<s csslt 33902   |s cscut 33904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-riota 7212  df-oprab 7259  df-mpo 7260  df-sslt 33903  df-scut 33905
This theorem is referenced by:  scutf  33933  madeval2  33964
  Copyright terms: Public domain W3C validator