Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutval Structured version   Visualization version   GIF version

Theorem scutval 33627
Description: The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutval (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem scutval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 33614 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
2 ssltss1 33616 . . 3 (𝐴 <<s 𝐵𝐴 No )
31, 2elpwd 4493 . 2 (𝐴 <<s 𝐵𝐴 ∈ 𝒫 No )
4 df-br 5028 . . . 4 (𝐴 <<s 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ <<s )
54biimpi 219 . . 3 (𝐴 <<s 𝐵 → ⟨𝐴, 𝐵⟩ ∈ <<s )
6 ssltex2 33615 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
7 elimasng 5923 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ( <<s “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ <<s ))
81, 6, 7syl2anc 587 . . 3 (𝐴 <<s 𝐵 → (𝐵 ∈ ( <<s “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ <<s ))
95, 8mpbird 260 . 2 (𝐴 <<s 𝐵𝐵 ∈ ( <<s “ {𝐴}))
10 riotaex 7125 . . 3 (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ V
11 breq1 5030 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 <<s {𝑦} ↔ 𝐴 <<s {𝑦}))
12 breq2 5031 . . . . . . 7 (𝑏 = 𝐵 → ({𝑦} <<s 𝑏 ↔ {𝑦} <<s 𝐵))
1311, 12bi2anan9 639 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)))
1413rabbidv 3380 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} = {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
1514imaeq2d 5897 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
1615inteqd 4838 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
1716eqeq2d 2749 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) ↔ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
1814, 17riotaeqbidv 7124 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
19 sneq 4523 . . . . 5 (𝑎 = 𝐴 → {𝑎} = {𝐴})
2019imaeq2d 5897 . . . 4 (𝑎 = 𝐴 → ( <<s “ {𝑎}) = ( <<s “ {𝐴}))
21 df-scut 33611 . . . 4 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
2218, 20, 21ovmpox 7312 . . 3 ((𝐴 ∈ 𝒫 No 𝐵 ∈ ( <<s “ {𝐴}) ∧ (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ V) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
2310, 22mp3an3 1451 . 2 ((𝐴 ∈ 𝒫 No 𝐵 ∈ ( <<s “ {𝐴})) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
243, 9, 23syl2anc 587 1 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  {crab 3057  Vcvv 3397  𝒫 cpw 4485  {csn 4513  cop 4519   cint 4833   class class class wbr 5027  cima 5522  cfv 6333  crio 7120  (class class class)co 7164   No csur 33476   bday cbday 33478   <<s csslt 33608   |s cscut 33610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-int 4834  df-br 5028  df-opab 5090  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-sslt 33609  df-scut 33611
This theorem is referenced by:  scutcut  33628  scutbday  33631  eqscut  33632  scutun12  33637  scutf  33639  scutbdaylt  33645
  Copyright terms: Public domain W3C validator