MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutval Structured version   Visualization version   GIF version

Theorem scutval 27741
Description: The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutval (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem scutval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 27726 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
2 ssltss1 27728 . . 3 (𝐴 <<s 𝐵𝐴 No )
31, 2elpwd 4553 . 2 (𝐴 <<s 𝐵𝐴 ∈ 𝒫 No )
4 df-br 5090 . . . 4 (𝐴 <<s 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ <<s )
54biimpi 216 . . 3 (𝐴 <<s 𝐵 → ⟨𝐴, 𝐵⟩ ∈ <<s )
6 ssltex2 27727 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
7 elimasng 6037 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ( <<s “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ <<s ))
81, 6, 7syl2anc 584 . . 3 (𝐴 <<s 𝐵 → (𝐵 ∈ ( <<s “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ <<s ))
95, 8mpbird 257 . 2 (𝐴 <<s 𝐵𝐵 ∈ ( <<s “ {𝐴}))
10 riotaex 7307 . . 3 (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ V
11 breq1 5092 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 <<s {𝑦} ↔ 𝐴 <<s {𝑦}))
12 breq2 5093 . . . . . . 7 (𝑏 = 𝐵 → ({𝑦} <<s 𝑏 ↔ {𝑦} <<s 𝐵))
1311, 12bi2anan9 638 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)))
1413rabbidv 3402 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} = {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
1514imaeq2d 6008 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
1615inteqd 4900 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
1716eqeq2d 2742 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) ↔ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
1814, 17riotaeqbidv 7306 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
19 sneq 4583 . . . . 5 (𝑎 = 𝐴 → {𝑎} = {𝐴})
2019imaeq2d 6008 . . . 4 (𝑎 = 𝐴 → ( <<s “ {𝑎}) = ( <<s “ {𝐴}))
21 df-scut 27723 . . . 4 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
2218, 20, 21ovmpox 7499 . . 3 ((𝐴 ∈ 𝒫 No 𝐵 ∈ ( <<s “ {𝐴}) ∧ (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ V) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
2310, 22mp3an3 1452 . 2 ((𝐴 ∈ 𝒫 No 𝐵 ∈ ( <<s “ {𝐴})) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
243, 9, 23syl2anc 584 1 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  𝒫 cpw 4547  {csn 4573  cop 4579   cint 4895   class class class wbr 5089  cima 5617  cfv 6481  crio 7302  (class class class)co 7346   No csur 27578   bday cbday 27580   <<s csslt 27720   |s cscut 27722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sslt 27721  df-scut 27723
This theorem is referenced by:  scutcut  27742  scutbday  27745  eqscut  27746  scutun12  27751  scutf  27753  scutbdaylt  27759
  Copyright terms: Public domain W3C validator