Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutval Structured version   Visualization version   GIF version

Theorem scutval 33921
Description: The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutval (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem scutval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 33908 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
2 ssltss1 33910 . . 3 (𝐴 <<s 𝐵𝐴 No )
31, 2elpwd 4538 . 2 (𝐴 <<s 𝐵𝐴 ∈ 𝒫 No )
4 df-br 5071 . . . 4 (𝐴 <<s 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ <<s )
54biimpi 215 . . 3 (𝐴 <<s 𝐵 → ⟨𝐴, 𝐵⟩ ∈ <<s )
6 ssltex2 33909 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
7 elimasng 5985 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ( <<s “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ <<s ))
81, 6, 7syl2anc 583 . . 3 (𝐴 <<s 𝐵 → (𝐵 ∈ ( <<s “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ <<s ))
95, 8mpbird 256 . 2 (𝐴 <<s 𝐵𝐵 ∈ ( <<s “ {𝐴}))
10 riotaex 7216 . . 3 (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ V
11 breq1 5073 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 <<s {𝑦} ↔ 𝐴 <<s {𝑦}))
12 breq2 5074 . . . . . . 7 (𝑏 = 𝐵 → ({𝑦} <<s 𝑏 ↔ {𝑦} <<s 𝐵))
1311, 12bi2anan9 635 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)))
1413rabbidv 3404 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} = {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
1514imaeq2d 5958 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
1615inteqd 4881 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
1716eqeq2d 2749 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) ↔ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
1814, 17riotaeqbidv 7215 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
19 sneq 4568 . . . . 5 (𝑎 = 𝐴 → {𝑎} = {𝐴})
2019imaeq2d 5958 . . . 4 (𝑎 = 𝐴 → ( <<s “ {𝑎}) = ( <<s “ {𝐴}))
21 df-scut 33905 . . . 4 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
2218, 20, 21ovmpox 7404 . . 3 ((𝐴 ∈ 𝒫 No 𝐵 ∈ ( <<s “ {𝐴}) ∧ (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ V) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
2310, 22mp3an3 1448 . 2 ((𝐴 ∈ 𝒫 No 𝐵 ∈ ( <<s “ {𝐴})) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
243, 9, 23syl2anc 583 1 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  𝒫 cpw 4530  {csn 4558  cop 4564   cint 4876   class class class wbr 5070  cima 5583  cfv 6418  crio 7211  (class class class)co 7255   No csur 33770   bday cbday 33772   <<s csslt 33902   |s cscut 33904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-sslt 33903  df-scut 33905
This theorem is referenced by:  scutcut  33922  scutbday  33925  eqscut  33926  scutun12  33931  scutf  33933  scutbdaylt  33939
  Copyright terms: Public domain W3C validator