| Metamath
Proof Explorer Theorem List (p. 278 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30899) |
(30900-32422) |
(32423-49669) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | noetainflem1 27701* | Lemma for noeta 27707. Establish that this particular construction gives a surreal. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑊 ∈ No ) | ||
| Theorem | noetainflem2 27702* | Lemma for noeta 27707. The restriction of 𝑊 to the domain of 𝑇 is 𝑇. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇) | ||
| Theorem | noetainflem3 27703* | Lemma for noeta 27707. 𝑊 bounds 𝐵 below . (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 <s 𝑌) | ||
| Theorem | noetainflem4 27704* | Lemma for noeta 27707. If 𝐴 precedes 𝐵, then 𝑊 is greater than 𝐴. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑊) | ||
| Theorem | noetalem1 27705* | Lemma for noeta 27707. Either 𝑆 or 𝑇 satisfies the final condition. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ((𝑆 ∈ No ∧ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘𝑆) ⊆ 𝑂)) ∨ (𝑇 ∈ No ∧ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘𝑇) ⊆ 𝑂)))) | ||
| Theorem | noetalem2 27706* | Lemma for noeta 27707. The full statement of the theorem with hypotheses in place. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑐 ∈ No (∀𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday ‘𝑐) ⊆ 𝑂)) | ||
| Theorem | noeta 27707* | The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) | ||
| Syntax | csle 27708 | Declare the syntax for surreal less-than or equal. |
| class ≤s | ||
| Definition | df-sle 27709 | Define the surreal less-than or equal predicate. Compare df-le 11275. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ ≤s = (( No × No ) ∖ ◡ <s ) | ||
| Theorem | sltirr 27710 | Surreal less-than is irreflexive. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) | ||
| Theorem | slttr 27711 | Surreal less-than is transitive. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | ||
| Theorem | sltasym 27712 | Surreal less-than is asymmetric. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴)) | ||
| Theorem | sltlin 27713 | Surreal less-than obeys trichotomy. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <s 𝐴)) | ||
| Theorem | slttrieq2 27714 | Trichotomy law for surreal less-than. (Contributed by Scott Fenton, 22-Apr-2012.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴))) | ||
| Theorem | slttrine 27715 | Trichotomy law for surreals. (Contributed by Scott Fenton, 23-Nov-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) | ||
| Theorem | slenlt 27716 | Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | ||
| Theorem | sltnle 27717 | Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴)) | ||
| Theorem | sleloe 27718 | Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | sletri3 27719 | Trichotomy law for surreal less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴))) | ||
| Theorem | sltletr 27720 | Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 <s 𝐶)) | ||
| Theorem | slelttr 27721 | Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | ||
| Theorem | sletr 27722 | Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) | ||
| Theorem | slttrd 27723 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 𝐵 <s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
| Theorem | sltletrd 27724 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 𝐵 ≤s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
| Theorem | slelttrd 27725 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐵 <s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
| Theorem | sletrd 27726 | Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐵 ≤s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤s 𝐶) | ||
| Theorem | slerflex 27727 | Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) | ||
| Theorem | sletric 27728 | Surreal trichotomy law. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ∨ 𝐵 ≤s 𝐴)) | ||
| Theorem | maxs1 27729 | A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ No → 𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴)) | ||
| Theorem | maxs2 27730 | A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴)) | ||
| Theorem | mins1 27731 | The minimum of two surreals is less than or equal to the first. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) | ||
| Theorem | mins2 27732 | The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ (𝐵 ∈ No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) | ||
| Theorem | sltled 27733 | Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤s 𝐵) | ||
| Theorem | sltne 27734 | Surreal less-than implies not equal. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) | ||
| Theorem | sltlend 27735 | Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | bdayfun 27736 | The birthday function is a function. (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ Fun bday | ||
| Theorem | bdayfn 27737 | The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
| ⊢ bday Fn No | ||
| Theorem | bdaydm 27738 | The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ dom bday = No | ||
| Theorem | bdayrn 27739 | The birthday function's range is On. (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ ran bday = On | ||
| Theorem | bdayelon 27740 | The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
| ⊢ ( bday ‘𝐴) ∈ On | ||
| Theorem | nocvxminlem 27741* | Lemma for nocvxmin 27742. Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011.) |
| ⊢ ((𝐴 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (( bday ‘𝑋) = ∩ ( bday “ 𝐴) ∧ ( bday ‘𝑌) = ∩ ( bday “ 𝐴))) → ¬ 𝑋 <s 𝑌)) | ||
| Theorem | nocvxmin 27742* | Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of [Alling] p. 185. (Contributed by Scott Fenton, 30-Jun-2011.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∃!𝑤 ∈ 𝐴 ( bday ‘𝑤) = ∩ ( bday “ 𝐴)) | ||
| Theorem | noprc 27743 | The surreal numbers are a proper class. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ ¬ No ∈ V | ||
In [Conway] surreal numbers are represented as equivalence classes of cuts of previously defined surreal numbers. This is complicated to handle in ZFC without classes so we do not make it our definition. However, we can define a cut operator on surreals that behaves similarly. We introduce such an operator in this section and use it to define all surreals hearafter. | ||
| Syntax | csslt 27744 | Declare the syntax for surreal set less-than. |
| class <<s | ||
| Definition | df-sslt 27745* | Define the relation that holds iff one set of surreals completely precedes another. (Contributed by Scott Fenton, 7-Dec-2021.) |
| ⊢ <<s = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} | ||
| Syntax | cscut 27746 | Declare the syntax for the surreal cut operator. |
| class |s | ||
| Definition | df-scut 27747* | Define the cut operator on surreal numbers. This operator, which Conway takes as the primitive operator over surreals, picks the surreal lying between two sets of surreals of minimal birthday. Definition from [Gonshor] p. 7. (Contributed by Scott Fenton, 7-Dec-2021.) |
| ⊢ |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) | ||
| Theorem | noeta2 27748* | A version of noeta 27707 with fewer hypotheses but a weaker upper bound (Contributed by Scott Fenton, 7-Dec-2021.) |
| ⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | ||
| Theorem | brsslt 27749* | Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | ||
| Theorem | ssltex1 27750 | The first argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | ||
| Theorem | ssltex2 27751 | The second argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | ||
| Theorem | ssltss1 27752 | The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | ||
| Theorem | ssltss2 27753 | The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | ||
| Theorem | ssltsep 27754* | The separation property of surreal set less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | ||
| Theorem | ssltd 27755* | Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝐵 ⊆ No ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) ⇒ ⊢ (𝜑 → 𝐴 <<s 𝐵) | ||
| Theorem | ssltsn 27756 | Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → {𝐴} <<s {𝐵}) | ||
| Theorem | ssltsepc 27757 | Two elements of separated sets obey less-than. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | ||
| Theorem | ssltsepcd 27758 | Two elements of separated sets obey less-than. Deduction form of ssltsepc 27757. (Contributed by Scott Fenton, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 <s 𝑌) | ||
| Theorem | sssslt1 27759 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) | ||
| Theorem | sssslt2 27760 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 <<s 𝐶) | ||
| Theorem | nulsslt 27761 | The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) | ||
| Theorem | nulssgt 27762 | The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) | ||
| Theorem | conway 27763* | Conway's Simplicity Theorem. Given 𝐴 preceeding 𝐵, there is a unique surreal of minimal length separating them. This is a fundamental property of surreals and will be used (via surreal cuts) to prove many properties later on. Theorem from [Alling] p. 185. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) | ||
| Theorem | scutval 27764* | The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) | ||
| Theorem | scutcut 27765 | Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | ||
| Theorem | scutcl 27766 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
| ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No ) | ||
| Theorem | scutcld 27767 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) ∈ No ) | ||
| Theorem | scutbday 27768* | The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈ No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) | ||
| Theorem | eqscut 27769* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday ‘𝑋) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) | ||
| Theorem | eqscut2 27770* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 ∈ No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑦))))) | ||
| Theorem | sslttr 27771 | Transitive law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐵 <<s 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 <<s 𝐶) | ||
| Theorem | ssltun1 27772 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶) → (𝐴 ∪ 𝐵) <<s 𝐶) | ||
| Theorem | ssltun2 27773 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐴 <<s 𝐶) → 𝐴 <<s (𝐵 ∪ 𝐶)) | ||
| Theorem | scutun12 27774 | Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 ∪ 𝐶) |s (𝐵 ∪ 𝐷)) = (𝐴 |s 𝐵)) | ||
| Theorem | dmscut 27775 | The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ dom |s = <<s | ||
| Theorem | scutf 27776 | Functionality statement for the surreal cut operator. (Contributed by Scott Fenton, 15-Dec-2021.) |
| ⊢ |s : <<s ⟶ No | ||
| Theorem | etasslt 27777* | A restatement of noeta 27707 using set less-than. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ 𝑂)) | ||
| Theorem | etasslt2 27778* | A version of etasslt 27777 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | ||
| Theorem | scutbdaybnd 27779 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂) | ||
| Theorem | scutbdaybnd2 27780 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
| Theorem | scutbdaybnd2lim 27781 | An upper bound on the birthday of a surreal cut when it is a limit birthday. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
| Theorem | scutbdaylt 27782 | If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.) |
| ⊢ ((𝑋 ∈ No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘𝑋)) | ||
| Theorem | slerec 27783* | A comparison law for surreals considered as cuts of sets of surreals. Definition from [Conway] p. 4. Theorem 4 of [Alling] p. 186. Theorem 2.5 of [Gonshor] p. 9. (Contributed by Scott Fenton, 11-Dec-2021.) |
| ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) | ||
| Theorem | sltrec 27784* | A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021.) |
| ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) | ||
| Theorem | ssltdisj 27785 | If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
| ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) | ||
| Syntax | c0s 27786 | Declare the class syntax for surreal zero. |
| class 0s | ||
| Syntax | c1s 27787 | Declare the class syntax for surreal one. |
| class 1s | ||
| Definition | df-0s 27788 | Define surreal zero. This is the simplest cut of surreal number sets. Definition from [Conway] p. 17. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 0s = (∅ |s ∅) | ||
| Definition | df-1s 27789 | Define surreal one. This is the simplest number greater than surreal zero. Definition from [Conway] p. 18. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 1s = ({ 0s } |s ∅) | ||
| Theorem | 0sno 27790 | Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 0s ∈ No | ||
| Theorem | 1sno 27791 | Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 1s ∈ No | ||
| Theorem | bday0s 27792 | Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ( bday ‘ 0s ) = ∅ | ||
| Theorem | 0slt1s 27793 | Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 0s <s 1s | ||
| Theorem | bday0b 27794 | The only surreal with birthday ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) | ||
| Theorem | bday1s 27795 | The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ( bday ‘ 1s ) = 1o | ||
| Theorem | cuteq0 27796 | Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 <<s { 0s }) & ⊢ (𝜑 → { 0s } <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = 0s ) | ||
| Theorem | cutneg 27797 | The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 0s ) ⇒ ⊢ (𝜑 → ({𝐴} |s ∅) = 0s ) | ||
| Theorem | cuteq1 27798 | Condition for a surreal cut to equal one. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (𝜑 → 0s ∈ 𝐴) & ⊢ (𝜑 → 𝐴 <<s { 1s }) & ⊢ (𝜑 → { 1s } <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = 1s ) | ||
| Theorem | sgt0ne0 27799 | A positive surreal is not equal to zero. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ ( 0s <s 𝐴 → 𝐴 ≠ 0s ) | ||
| Theorem | sgt0ne0d 27800 | A positive surreal is not equal to zero. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (𝜑 → 0s <s 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0s ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |