| Metamath
Proof Explorer Theorem List (p. 278 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ssltss2 27701 | The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | ||
| Theorem | ssltsep 27702* | The separation property of surreal set less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | ||
| Theorem | ssltd 27703* | Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝐵 ⊆ No ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) ⇒ ⊢ (𝜑 → 𝐴 <<s 𝐵) | ||
| Theorem | ssltsn 27704 | Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → {𝐴} <<s {𝐵}) | ||
| Theorem | ssltsepc 27705 | Two elements of separated sets obey less-than. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | ||
| Theorem | ssltsepcd 27706 | Two elements of separated sets obey less-than. Deduction form of ssltsepc 27705. (Contributed by Scott Fenton, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 <s 𝑌) | ||
| Theorem | sssslt1 27707 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) | ||
| Theorem | sssslt2 27708 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 <<s 𝐶) | ||
| Theorem | nulsslt 27709 | The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) | ||
| Theorem | nulssgt 27710 | The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) | ||
| Theorem | conway 27711* | Conway's Simplicity Theorem. Given 𝐴 preceeding 𝐵, there is a unique surreal of minimal length separating them. This is a fundamental property of surreals and will be used (via surreal cuts) to prove many properties later on. Theorem from [Alling] p. 185. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) | ||
| Theorem | scutval 27712* | The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) | ||
| Theorem | scutcut 27713 | Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | ||
| Theorem | scutcl 27714 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
| ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No ) | ||
| Theorem | scutcld 27715 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) ∈ No ) | ||
| Theorem | scutbday 27716* | The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈ No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) | ||
| Theorem | eqscut 27717* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday ‘𝑋) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) | ||
| Theorem | eqscut2 27718* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 ∈ No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑦))))) | ||
| Theorem | sslttr 27719 | Transitive law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐵 <<s 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 <<s 𝐶) | ||
| Theorem | ssltun1 27720 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶) → (𝐴 ∪ 𝐵) <<s 𝐶) | ||
| Theorem | ssltun2 27721 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐴 <<s 𝐶) → 𝐴 <<s (𝐵 ∪ 𝐶)) | ||
| Theorem | scutun12 27722 | Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 ∪ 𝐶) |s (𝐵 ∪ 𝐷)) = (𝐴 |s 𝐵)) | ||
| Theorem | dmscut 27723 | The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ dom |s = <<s | ||
| Theorem | scutf 27724 | Functionality statement for the surreal cut operator. (Contributed by Scott Fenton, 15-Dec-2021.) |
| ⊢ |s : <<s ⟶ No | ||
| Theorem | etasslt 27725* | A restatement of noeta 27655 using set less-than. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ 𝑂)) | ||
| Theorem | etasslt2 27726* | A version of etasslt 27725 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | ||
| Theorem | scutbdaybnd 27727 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂) | ||
| Theorem | scutbdaybnd2 27728 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
| Theorem | scutbdaybnd2lim 27729 | An upper bound on the birthday of a surreal cut when it is a limit birthday. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
| Theorem | scutbdaylt 27730 | If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.) |
| ⊢ ((𝑋 ∈ No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘𝑋)) | ||
| Theorem | slerec 27731* | A comparison law for surreals considered as cuts of sets of surreals. Definition from [Conway] p. 4. Theorem 4 of [Alling] p. 186. Theorem 2.5 of [Gonshor] p. 9. (Contributed by Scott Fenton, 11-Dec-2021.) |
| ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) | ||
| Theorem | sltrec 27732* | A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021.) |
| ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) | ||
| Theorem | ssltdisj 27733 | If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
| ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) | ||
| Syntax | c0s 27734 | Declare the class syntax for surreal zero. |
| class 0s | ||
| Syntax | c1s 27735 | Declare the class syntax for surreal one. |
| class 1s | ||
| Definition | df-0s 27736 | Define surreal zero. This is the simplest cut of surreal number sets. Definition from [Conway] p. 17. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 0s = (∅ |s ∅) | ||
| Definition | df-1s 27737 | Define surreal one. This is the simplest number greater than surreal zero. Definition from [Conway] p. 18. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 1s = ({ 0s } |s ∅) | ||
| Theorem | 0sno 27738 | Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 0s ∈ No | ||
| Theorem | 1sno 27739 | Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 1s ∈ No | ||
| Theorem | bday0s 27740 | Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ( bday ‘ 0s ) = ∅ | ||
| Theorem | 0slt1s 27741 | Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 0s <s 1s | ||
| Theorem | bday0b 27742 | The only surreal with birthday ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) | ||
| Theorem | bday1s 27743 | The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ( bday ‘ 1s ) = 1o | ||
| Theorem | cuteq0 27744 | Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 <<s { 0s }) & ⊢ (𝜑 → { 0s } <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = 0s ) | ||
| Theorem | cutneg 27745 | The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 0s ) ⇒ ⊢ (𝜑 → ({𝐴} |s ∅) = 0s ) | ||
| Theorem | cuteq1 27746 | Condition for a surreal cut to equal one. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (𝜑 → 0s ∈ 𝐴) & ⊢ (𝜑 → 𝐴 <<s { 1s }) & ⊢ (𝜑 → { 1s } <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = 1s ) | ||
| Theorem | sgt0ne0 27747 | A positive surreal is not equal to zero. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ ( 0s <s 𝐴 → 𝐴 ≠ 0s ) | ||
| Theorem | sgt0ne0d 27748 | A positive surreal is not equal to zero. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (𝜑 → 0s <s 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0s ) | ||
| Theorem | 1sne0s 27749 | Surreal zero does not equal surreal one. (Contributed by Scott Fenton, 5-Sep-2025.) |
| ⊢ 1s ≠ 0s | ||
| Syntax | cmade 27750 | Declare the symbol for the made by function. |
| class M | ||
| Syntax | cold 27751 | Declare the symbol for the older than function. |
| class O | ||
| Syntax | cnew 27752 | Declare the symbol for the new on function. |
| class N | ||
| Syntax | cleft 27753 | Declare the symbol for the left option function. |
| class L | ||
| Syntax | cright 27754 | Declare the symbol for the right option function. |
| class R | ||
| Definition | df-made 27755 | Define the made by function. This function carries an ordinal to all surreals made by sections of surreals older than it. Definition from [Conway] p. 29. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑓 × 𝒫 ∪ ran 𝑓)))) | ||
| Definition | df-old 27756 | Define the older than function. This function carries an ordinal to all surreals made by a previous ordinal. Definition from [Conway] p. 29. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | ||
| Definition | df-new 27757 | Define the newer than function. This function carries an ordinal to all surreals made on that day. Definition from [Conway] p. 29. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥))) | ||
| Definition | df-left 27758* | Define the left options of a surreal. This is the set of surreals that are simpler and less than the given surreal. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ L = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥}) | ||
| Definition | df-right 27759* | Define the right options of a surreal. This is the set of surreals that are simpler and greater than the given surreal. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ R = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) | ||
| Theorem | madeval 27760 | The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) | ||
| Theorem | madeval2 27761* | Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 ∈ No ∣ ∃𝑎 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑏 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}) | ||
| Theorem | oldval 27762 | The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | ||
| Theorem | newval 27763 | The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) | ||
| Theorem | madef 27764 | The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ M :On⟶𝒫 No | ||
| Theorem | oldf 27765 | The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ O :On⟶𝒫 No | ||
| Theorem | newf 27766 | The new function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ N :On⟶𝒫 No | ||
| Theorem | old0 27767 | No surreal is older than ∅. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ( O ‘∅) = ∅ | ||
| Theorem | madessno 27768 | Made sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( M ‘𝐴) ⊆ No | ||
| Theorem | oldssno 27769 | Old sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( O ‘𝐴) ⊆ No | ||
| Theorem | newssno 27770 | New sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( N ‘𝐴) ⊆ No | ||
| Theorem | leftval 27771* | The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} | ||
| Theorem | rightval 27772* | The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} | ||
| Theorem | elleft 27773 | Membership in the left set of a surreal. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ( L ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday ‘𝐵)) ∧ 𝐴 <s 𝐵)) | ||
| Theorem | elright 27774 | Membership in the right set of a surreal. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ( R ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday ‘𝐵)) ∧ 𝐵 <s 𝐴)) | ||
| Theorem | leftlt 27775 | A member of a surreal's left set is less than it. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ( L ‘𝐵) → 𝐴 <s 𝐵) | ||
| Theorem | rightgt 27776 | A member of a surreal's right set is greater than it. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ( R ‘𝐵) → 𝐵 <s 𝐴) | ||
| Theorem | leftf 27777 | The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ L : No ⟶𝒫 No | ||
| Theorem | rightf 27778 | The functionality of the right options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ R : No ⟶𝒫 No | ||
| Theorem | elmade 27779* | Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) | ||
| Theorem | elmade2 27780* | Membership in the made function in terms of the old function. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) | ||
| Theorem | elold 27781* | Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | ||
| Theorem | ssltleft 27782 | A surreal is greater than its left options. Theorem 0(ii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) | ||
| Theorem | ssltright 27783 | A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) | ||
| Theorem | lltropt 27784 | The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024.) (Revised by Scott Fenton, 21-Feb-2025.) |
| ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) | ||
| Theorem | made0 27785 | The only surreal made on day ∅ is 0s. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ( M ‘∅) = { 0s } | ||
| Theorem | new0 27786 | The only surreal new on day ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ( N ‘∅) = { 0s } | ||
| Theorem | old1 27787 | The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ( O ‘1o) = { 0s } | ||
| Theorem | madess 27788 | If 𝐴 is less than or equal to ordinal 𝐵, then the made set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵)) | ||
| Theorem | oldssmade 27789 | The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) | ||
| Theorem | leftssold 27790 | The left options are a subset of the old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( L ‘𝑋) ⊆ ( O ‘( bday ‘𝑋)) | ||
| Theorem | rightssold 27791 | The right options are a subset of the old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( R ‘𝑋) ⊆ ( O ‘( bday ‘𝑋)) | ||
| Theorem | leftssno 27792 | The left set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( L ‘𝐴) ⊆ No | ||
| Theorem | rightssno 27793 | The right set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( R ‘𝐴) ⊆ No | ||
| Theorem | madecut 27794 | Given a section that is a subset of an old set, the cut is a member of the made set. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴)) | ||
| Theorem | madeun 27795 | The made set is the union of the old set and the new set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( M ‘𝐴) = (( O ‘𝐴) ∪ ( N ‘𝐴)) | ||
| Theorem | madeoldsuc 27796 | The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) | ||
| Theorem | oldsuc 27797 | The value of the old set at a successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ (𝐴 ∈ On → ( O ‘suc 𝐴) = (( O ‘𝐴) ∪ ( N ‘𝐴))) | ||
| Theorem | oldlim 27798 | The value of the old set at a limit ordinal. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → ( O ‘𝐴) = ∪ ( O “ 𝐴)) | ||
| Theorem | madebdayim 27799 | If a surreal is a member of a made set, its birthday is less than or equal to the level. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ (𝑋 ∈ ( M ‘𝐴) → ( bday ‘𝑋) ⊆ 𝐴) | ||
| Theorem | oldbdayim 27800 | If 𝑋 is in the old set for 𝐴, then the birthday of 𝑋 is less than 𝐴. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |