| Metamath
Proof Explorer Theorem List (p. 278 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | slelttrd 27701 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐵 <s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
| Theorem | sletrd 27702 | Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐵 ≤s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤s 𝐶) | ||
| Theorem | slerflex 27703 | Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) | ||
| Theorem | sletric 27704 | Surreal trichotomy law. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ∨ 𝐵 ≤s 𝐴)) | ||
| Theorem | maxs1 27705 | A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ No → 𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴)) | ||
| Theorem | maxs2 27706 | A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴)) | ||
| Theorem | mins1 27707 | The minimum of two surreals is less than or equal to the first. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) | ||
| Theorem | mins2 27708 | The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ (𝐵 ∈ No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) | ||
| Theorem | sltled 27709 | Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤s 𝐵) | ||
| Theorem | sltne 27710 | Surreal less-than implies not equal. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) | ||
| Theorem | sltlend 27711 | Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | bdayfun 27712 | The birthday function is a function. (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ Fun bday | ||
| Theorem | bdayfn 27713 | The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
| ⊢ bday Fn No | ||
| Theorem | bdaydm 27714 | The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ dom bday = No | ||
| Theorem | bdayrn 27715 | The birthday function's range is On. (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ ran bday = On | ||
| Theorem | bdayelon 27716 | The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
| ⊢ ( bday ‘𝐴) ∈ On | ||
| Theorem | nobdaymin 27717* | Any non-empty class of surreals has a birthday-minimal element. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ ((𝐴 ⊆ No ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ( bday ‘𝑥) = ∩ ( bday “ 𝐴)) | ||
| Theorem | nocvxminlem 27718* | Lemma for nocvxmin 27719. Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011.) |
| ⊢ ((𝐴 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (( bday ‘𝑋) = ∩ ( bday “ 𝐴) ∧ ( bday ‘𝑌) = ∩ ( bday “ 𝐴))) → ¬ 𝑋 <s 𝑌)) | ||
| Theorem | nocvxmin 27719* | Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of [Alling] p. 185. (Contributed by Scott Fenton, 30-Jun-2011.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∃!𝑤 ∈ 𝐴 ( bday ‘𝑤) = ∩ ( bday “ 𝐴)) | ||
| Theorem | noprc 27720 | The surreal numbers are a proper class. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ ¬ No ∈ V | ||
In [Conway] surreal numbers are represented as equivalence classes of cuts of previously defined surreal numbers. This is complicated to handle in ZFC without classes so we do not make it our definition. However, we can define a cut operator on surreals that behaves similarly. We introduce such an operator in this section and use it to define all surreals hearafter. | ||
| Syntax | csslt 27721 | Declare the syntax for surreal set less-than. |
| class <<s | ||
| Definition | df-sslt 27722* | Define the relation that holds iff one set of surreals completely precedes another. (Contributed by Scott Fenton, 7-Dec-2021.) |
| ⊢ <<s = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} | ||
| Syntax | cscut 27723 | Declare the syntax for the surreal cut operator. |
| class |s | ||
| Definition | df-scut 27724* | Define the cut operator on surreal numbers. This operator, which Conway takes as the primitive operator over surreals, picks the surreal lying between two sets of surreals of minimal birthday. Definition from [Gonshor] p. 7. (Contributed by Scott Fenton, 7-Dec-2021.) |
| ⊢ |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) | ||
| Theorem | noeta2 27725* | A version of noeta 27683 with fewer hypotheses but a weaker upper bound (Contributed by Scott Fenton, 7-Dec-2021.) |
| ⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | ||
| Theorem | brsslt 27726* | Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | ||
| Theorem | ssltex1 27727 | The first argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | ||
| Theorem | ssltex2 27728 | The second argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | ||
| Theorem | ssltss1 27729 | The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | ||
| Theorem | ssltss2 27730 | The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | ||
| Theorem | ssltsep 27731* | The separation property of surreal set less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | ||
| Theorem | ssltd 27732* | Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝐵 ⊆ No ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) ⇒ ⊢ (𝜑 → 𝐴 <<s 𝐵) | ||
| Theorem | ssltsnb 27733 | Surreal set less-than of two singletons. (Contributed by Scott Fenton, 18-Jan-2026.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ({𝐴} <<s {𝐵} ↔ 𝐴 <s 𝐵)) | ||
| Theorem | ssltsn 27734 | Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → {𝐴} <<s {𝐵}) | ||
| Theorem | ssltsepc 27735 | Two elements of separated sets obey less-than. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | ||
| Theorem | ssltsepcd 27736 | Two elements of separated sets obey less-than. Deduction form of ssltsepc 27735. (Contributed by Scott Fenton, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 <s 𝑌) | ||
| Theorem | sssslt1 27737 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) | ||
| Theorem | sssslt2 27738 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 <<s 𝐶) | ||
| Theorem | nulsslt 27739 | The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) | ||
| Theorem | nulssgt 27740 | The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) | ||
| Theorem | conway 27741* | Conway's Simplicity Theorem. Given 𝐴 preceeding 𝐵, there is a unique surreal of minimal length separating them. This is a fundamental property of surreals and will be used (via surreal cuts) to prove many properties later on. Theorem from [Alling] p. 185. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) | ||
| Theorem | scutval 27742* | The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) | ||
| Theorem | scutcut 27743 | Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | ||
| Theorem | scutcl 27744 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
| ⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No ) | ||
| Theorem | scutcld 27745 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) ∈ No ) | ||
| Theorem | scutbday 27746* | The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈ No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) | ||
| Theorem | eqscut 27747* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday ‘𝑋) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) | ||
| Theorem | eqscut2 27748* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 ∈ No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑦))))) | ||
| Theorem | sslttr 27749 | Transitive law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐵 <<s 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 <<s 𝐶) | ||
| Theorem | ssltun1 27750 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶) → (𝐴 ∪ 𝐵) <<s 𝐶) | ||
| Theorem | ssltun2 27751 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐴 <<s 𝐶) → 𝐴 <<s (𝐵 ∪ 𝐶)) | ||
| Theorem | scutun12 27752 | Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 ∪ 𝐶) |s (𝐵 ∪ 𝐷)) = (𝐴 |s 𝐵)) | ||
| Theorem | dmscut 27753 | The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.) |
| ⊢ dom |s = <<s | ||
| Theorem | scutf 27754 | Functionality statement for the surreal cut operator. (Contributed by Scott Fenton, 15-Dec-2021.) |
| ⊢ |s : <<s ⟶ No | ||
| Theorem | etasslt 27755* | A restatement of noeta 27683 using set less-than. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ 𝑂)) | ||
| Theorem | etasslt2 27756* | A version of etasslt 27755 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | ||
| Theorem | scutbdaybnd 27757 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂) | ||
| Theorem | scutbdaybnd2 27758 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Dec-2021.) |
| ⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
| Theorem | scutbdaybnd2lim 27759 | An upper bound on the birthday of a surreal cut when it is a limit birthday. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
| Theorem | scutbdaylt 27760 | If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.) |
| ⊢ ((𝑋 ∈ No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘𝑋)) | ||
| Theorem | slerec 27761* | A comparison law for surreals considered as cuts of sets of surreals. Definition from [Conway] p. 4. Theorem 4 of [Alling] p. 186. Theorem 2.5 of [Gonshor] p. 9. (Contributed by Scott Fenton, 11-Dec-2021.) |
| ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) | ||
| Theorem | slerecd 27762* | A comparison law for surreals considered as cuts of sets of surreals. Definition from [Conway] p. 4. Theorem 4 of [Alling] p. 186. Theorem 2.5 of [Gonshor] p. 9. (Contributed by Scott Fenton, 5-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝐶 <<s 𝐷) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) & ⊢ (𝜑 → 𝑌 = (𝐶 |s 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) | ||
| Theorem | sltrec 27763* | A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021.) |
| ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) | ||
| Theorem | sltrecd 27764* | A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 5-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝐶 <<s 𝐷) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) & ⊢ (𝜑 → 𝑌 = (𝐶 |s 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 <s 𝑌 ↔ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) | ||
| Theorem | ssltdisj 27765 | If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
| ⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) | ||
| Theorem | eqscut3 27766* | A variant of the simplicity theorem - if 𝐵 lies between the cut sets of 𝐴 but none of its options do, then 𝐴 = 𝐵. Theorem 11 of [Conway] p. 23. (Contributed by Scott Fenton, 28-Nov-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) & ⊢ (𝜑 → 𝐿 <<s {𝐵}) & ⊢ (𝜑 → {𝐵} <<s 𝑅) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (𝑀 ∪ 𝑆) ¬ (𝐿 <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s 𝑅)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Syntax | c0s 27767 | Declare the class syntax for surreal zero. |
| class 0s | ||
| Syntax | c1s 27768 | Declare the class syntax for surreal one. |
| class 1s | ||
| Definition | df-0s 27769 | Define surreal zero. This is the simplest cut of surreal number sets. Definition from [Conway] p. 17. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 0s = (∅ |s ∅) | ||
| Definition | df-1s 27770 | Define surreal one. This is the simplest number greater than surreal zero. Definition from [Conway] p. 18. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 1s = ({ 0s } |s ∅) | ||
| Theorem | 0sno 27771 | Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 0s ∈ No | ||
| Theorem | 1sno 27772 | Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 1s ∈ No | ||
| Theorem | bday0s 27773 | Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ( bday ‘ 0s ) = ∅ | ||
| Theorem | 0slt1s 27774 | Surreal zero is less than surreal one. Theorem from [Conway] p. 7. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ 0s <s 1s | ||
| Theorem | bday0b 27775 | The only surreal with birthday ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) | ||
| Theorem | bday1s 27776 | The birthday of surreal one is ordinal one. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ( bday ‘ 1s ) = 1o | ||
| Theorem | cuteq0 27777 | Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 <<s { 0s }) & ⊢ (𝜑 → { 0s } <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = 0s ) | ||
| Theorem | cutneg 27778 | The simplest number greater than a negative number is zero. (Contributed by Scott Fenton, 4-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 0s ) ⇒ ⊢ (𝜑 → ({𝐴} |s ∅) = 0s ) | ||
| Theorem | cuteq1 27779 | Condition for a surreal cut to equal one. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (𝜑 → 0s ∈ 𝐴) & ⊢ (𝜑 → 𝐴 <<s { 1s }) & ⊢ (𝜑 → { 1s } <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = 1s ) | ||
| Theorem | sgt0ne0 27780 | A positive surreal is not equal to zero. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ ( 0s <s 𝐴 → 𝐴 ≠ 0s ) | ||
| Theorem | sgt0ne0d 27781 | A positive surreal is not equal to zero. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (𝜑 → 0s <s 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0s ) | ||
| Theorem | 1sne0s 27782 | Surreal zero does not equal surreal one. (Contributed by Scott Fenton, 5-Sep-2025.) |
| ⊢ 1s ≠ 0s | ||
| Theorem | rightpos 27783* | A surreal is non-negative iff all its right options are positive. (Contributed by Scott Fenton, 1-Jan-2026.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) ⇒ ⊢ (𝜑 → ( 0s ≤s 𝑋 ↔ ∀𝑥𝑅 ∈ 𝐵 0s <s 𝑥𝑅)) | ||
| Syntax | cmade 27784 | Declare the symbol for the made by function. |
| class M | ||
| Syntax | cold 27785 | Declare the symbol for the older than function. |
| class O | ||
| Syntax | cnew 27786 | Declare the symbol for the new on function. |
| class N | ||
| Syntax | cleft 27787 | Declare the symbol for the left option function. |
| class L | ||
| Syntax | cright 27788 | Declare the symbol for the right option function. |
| class R | ||
| Definition | df-made 27789 | Define the made by function. This function carries an ordinal to all surreals made by sections of surreals older than it. Definition from [Conway] p. 29. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑓 × 𝒫 ∪ ran 𝑓)))) | ||
| Definition | df-old 27790 | Define the older than function. This function carries an ordinal to all surreals made by a previous ordinal. Definition from [Conway] p. 29. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | ||
| Definition | df-new 27791 | Define the newer than function. This function carries an ordinal to all surreals made on that day. Definition from [Conway] p. 29. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥))) | ||
| Definition | df-left 27792* | Define the left options of a surreal. This is the set of surreals that are simpler and less than the given surreal. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ L = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥}) | ||
| Definition | df-right 27793* | Define the right options of a surreal. This is the set of surreals that are simpler and greater than the given surreal. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ R = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) | ||
| Theorem | madeval 27794 | The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) | ||
| Theorem | madeval2 27795* | Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 ∈ No ∣ ∃𝑎 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑏 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}) | ||
| Theorem | oldval 27796 | The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | ||
| Theorem | newval 27797 | The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) | ||
| Theorem | madef 27798 | The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ M :On⟶𝒫 No | ||
| Theorem | oldf 27799 | The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ O :On⟶𝒫 No | ||
| Theorem | newf 27800 | The new function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ N :On⟶𝒫 No | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |