![]() |
Metamath
Proof Explorer Theorem List (p. 278 of 485) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30800) |
![]() (30801-32323) |
![]() (32324-48424) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | noinfres 27701* | The restriction of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) | ||
Theorem | noinfbnd1lem1 27702* | Lemma for noinfbnd1 27708. Establish a soft lower bound. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇) | ||
Theorem | noinfbnd1lem2 27703* | Lemma for noinfbnd1 27708. When there is no minimum, if any member of 𝐵 is a prolongment of 𝑇, then so are all elements below it. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) = 𝑇) | ||
Theorem | noinfbnd1lem3 27704* | Lemma for noinfbnd1 27708. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 1o. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o) | ||
Theorem | noinfbnd1lem4 27705* | Lemma for noinfbnd1 27708. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not undefined. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅) | ||
Theorem | noinfbnd1lem5 27706* | Lemma for noinfbnd1 27708. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 2o. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o) | ||
Theorem | noinfbnd1lem6 27707* | Lemma for noinfbnd1 27708. Establish a hard lower bound when there is no minimum. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇)) | ||
Theorem | noinfbnd1 27708* | Bounding law from above for the surreal infimum. Analagous to proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑈 ∈ 𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇)) | ||
Theorem | noinfbnd2lem1 27709* | Bounding law from below when a set of surreals has a minimum. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ (((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑍 ↾ suc dom 𝑈)) | ||
Theorem | noinfbnd2 27710* | Bounding law from below for the surreal infimum. Analagous to proposition 4.3 of [Lipparini] p. 6. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) → (∀𝑏 ∈ 𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s (𝑍 ↾ dom 𝑇))) | ||
Theorem | nosupinfsep 27711* | Given two sets of surreals, a surreal 𝑊 separates them iff its restriction to the maximum of dom 𝑆 and dom 𝑇 separates them. Corollary 4.4 of [Lipparini] p. 7. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑊 ∈ No ) → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑊 ∧ ∀𝑏 ∈ 𝐵 𝑊 <s 𝑏) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏 ∈ 𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏))) | ||
Theorem | noetasuplem1 27712* | Lemma for noeta 27722. Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ⇒ ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 ∈ No ) | ||
Theorem | noetasuplem2 27713* | Lemma for noeta 27722. The restriction of 𝑍 to dom 𝑆 is 𝑆. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ⇒ ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑍 ↾ dom 𝑆) = 𝑆) | ||
Theorem | noetasuplem3 27714* | Lemma for noeta 27722. 𝑍 is an upper bound for 𝐴. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 4-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ⇒ ⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋 ∈ 𝐴) → 𝑋 <s 𝑍) | ||
Theorem | noetasuplem4 27715* | Lemma for noeta 27722. When 𝐴 and 𝐵 are separated, then 𝑍 is a lower bound for 𝐵. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ⇒ ⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏) | ||
Theorem | noetainflem1 27716* | Lemma for noeta 27722. Establish that this particular construction gives a surreal. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑊 ∈ No ) | ||
Theorem | noetainflem2 27717* | Lemma for noeta 27722. The restriction of 𝑊 to the domain of 𝑇 is 𝑇. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇) | ||
Theorem | noetainflem3 27718* | Lemma for noeta 27722. 𝑊 bounds 𝐵 below . (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ (((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ 𝑌 ∈ 𝐵) → 𝑊 <s 𝑌) | ||
Theorem | noetainflem4 27719* | Lemma for noeta 27722. If 𝐴 precedes 𝐵, then 𝑊 is greater than 𝐴. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑊) | ||
Theorem | noetalem1 27720* | Lemma for noeta 27722. Either 𝑆 or 𝑇 satisfies the final condition. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) & ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ⇒ ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ((𝑆 ∈ No ∧ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday ‘𝑆) ⊆ 𝑂)) ∨ (𝑇 ∈ No ∧ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday ‘𝑇) ⊆ 𝑂)))) | ||
Theorem | noetalem2 27721* | Lemma for noeta 27722. The full statement of the theorem with hypotheses in place. (Contributed by Scott Fenton, 10-Aug-2024.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) & ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑐 ∈ No (∀𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday ‘𝑐) ⊆ 𝑂)) | ||
Theorem | noeta 27722* | The full-eta axiom for the surreal numbers. This is the single most important property of the surreals. It says that, given two sets of surreals such that one comes completely before the other, there is a surreal lying strictly between the two. Furthermore, if the birthdays of members of 𝐴 and 𝐵 are strictly bounded above by 𝑂, then 𝑂 non-strictly bounds the separator. Axiom FE of [Alling] p. 185. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ ((((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂)) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ 𝑂)) | ||
Syntax | csle 27723 | Declare the syntax for surreal less-than or equal. |
class ≤s | ||
Definition | df-sle 27724 | Define the surreal less-than or equal predicate. Compare df-le 11286. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ≤s = (( No × No ) ∖ ◡ <s ) | ||
Theorem | sltirr 27725 | Surreal less-than is irreflexive. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) | ||
Theorem | slttr 27726 | Surreal less-than is transitive. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | ||
Theorem | sltasym 27727 | Surreal less-than is asymmetric. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴)) | ||
Theorem | sltlin 27728 | Surreal less-than obeys trichotomy. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <s 𝐴)) | ||
Theorem | slttrieq2 27729 | Trichotomy law for surreal less-than. (Contributed by Scott Fenton, 22-Apr-2012.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴))) | ||
Theorem | slttrine 27730 | Trichotomy law for surreals. (Contributed by Scott Fenton, 23-Nov-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) | ||
Theorem | slenlt 27731 | Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) | ||
Theorem | sltnle 27732 | Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴)) | ||
Theorem | sleloe 27733 | Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | sletri3 27734 | Trichotomy law for surreal less-than or equal. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴))) | ||
Theorem | sltletr 27735 | Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 <s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 <s 𝐶)) | ||
Theorem | slelttr 27736 | Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | ||
Theorem | sletr 27737 | Surreal transitive law. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶) → 𝐴 ≤s 𝐶)) | ||
Theorem | slttrd 27738 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 𝐵 <s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
Theorem | sltletrd 27739 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 𝐵 ≤s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
Theorem | slelttrd 27740 | Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐵 <s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 <s 𝐶) | ||
Theorem | sletrd 27741 | Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐵 ≤s 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤s 𝐶) | ||
Theorem | slerflex 27742 | Surreal less-than or equal is reflexive. Theorem 0(iii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) | ||
Theorem | sletric 27743 | Surreal trichotomy law. (Contributed by Scott Fenton, 14-Feb-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ∨ 𝐵 ≤s 𝐴)) | ||
Theorem | maxs1 27744 | A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025.) |
⊢ (𝐴 ∈ No → 𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴)) | ||
Theorem | maxs2 27745 | A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴)) | ||
Theorem | mins1 27746 | The minimum of two surreals is less than or equal to the first. (Contributed by Scott Fenton, 14-Feb-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) | ||
Theorem | mins2 27747 | The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025.) |
⊢ (𝐵 ∈ No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) | ||
Theorem | sltled 27748 | Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤s 𝐵) | ||
Theorem | sltne 27749 | Surreal less-than implies not equal. (Contributed by Scott Fenton, 12-Mar-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) | ||
Theorem | sltlend 27750 | Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
Theorem | bdayfun 27751 | The birthday function is a function. (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ Fun bday | ||
Theorem | bdayfn 27752 | The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
⊢ bday Fn No | ||
Theorem | bdaydm 27753 | The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ dom bday = No | ||
Theorem | bdayrn 27754 | The birthday function's range is On. (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ ran bday = On | ||
Theorem | bdayelon 27755 | The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
⊢ ( bday ‘𝐴) ∈ On | ||
Theorem | nocvxminlem 27756* | Lemma for nocvxmin 27757. Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011.) |
⊢ ((𝐴 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (( bday ‘𝑋) = ∩ ( bday “ 𝐴) ∧ ( bday ‘𝑌) = ∩ ( bday “ 𝐴))) → ¬ 𝑋 <s 𝑌)) | ||
Theorem | nocvxmin 27757* | Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of [Alling] p. 185. (Contributed by Scott Fenton, 30-Jun-2011.) |
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No ((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∃!𝑤 ∈ 𝐴 ( bday ‘𝑤) = ∩ ( bday “ 𝐴)) | ||
Theorem | noprc 27758 | The surreal numbers are a proper class. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ¬ No ∈ V | ||
In [Conway] surreal numbers are represented as equivalence classes of cuts of previously defined surreal numbers. This is complicated to handle in ZFC without classes so we do not make it our definition. However, we can define a cut operator on surreals that behaves similarly. We introduce such an operator in this section and use it to define all surreals hearafter. | ||
Syntax | csslt 27759 | Declare the syntax for surreal set less-than. |
class <<s | ||
Definition | df-sslt 27760* | Define the relation that holds iff one set of surreals completely precedes another. (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ <<s = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} | ||
Syntax | cscut 27761 | Declare the syntax for the surreal cut operator. |
class |s | ||
Definition | df-scut 27762* | Define the cut operator on surreal numbers. This operator, which Conway takes as the primitive operator over surreals, picks the surreal lying between two sets of surreals of minimal birthday. Definition from [Gonshor] p. 7. (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) | ||
Theorem | noeta2 27763* | A version of noeta 27722 with fewer hypotheses but a weaker upper bound (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑊) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) → ∃𝑧 ∈ No (∀𝑥 ∈ 𝐴 𝑥 <s 𝑧 ∧ ∀𝑦 ∈ 𝐵 𝑧 <s 𝑦 ∧ ( bday ‘𝑧) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | ||
Theorem | brsslt 27764* | Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | ||
Theorem | ssltex1 27765 | The first argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | ||
Theorem | ssltex2 27766 | The second argument of surreal set less-than exists. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | ||
Theorem | ssltss1 27767 | The first argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | ||
Theorem | ssltss2 27768 | The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | ||
Theorem | ssltsep 27769* | The separation property of surreal set less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | ||
Theorem | ssltd 27770* | Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝐵 ⊆ No ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) ⇒ ⊢ (𝜑 → 𝐴 <<s 𝐵) | ||
Theorem | ssltsn 27771 | Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → {𝐴} <<s {𝐵}) | ||
Theorem | ssltsepc 27772 | Two elements of separated sets obey less-than. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) | ||
Theorem | ssltsepcd 27773 | Two elements of separated sets obey less-than. Deduction form of ssltsepc 27772. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 <s 𝑌) | ||
Theorem | sssslt1 27774 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐴) → 𝐶 <<s 𝐵) | ||
Theorem | sssslt2 27775 | Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 <<s 𝐶) | ||
Theorem | nulsslt 27776 | The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) | ||
Theorem | nulssgt 27777 | The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) | ||
Theorem | conway 27778* | Conway's Simplicity Theorem. Given 𝐴 preceeding 𝐵, there is a unique surreal of minimal length separating them. This is a fundamental property of surreals and will be used (via surreal cuts) to prove many properties later on. Theorem from [Alling] p. 185. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) | ||
Theorem | scutval 27779* | The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (℩𝑥 ∈ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday ‘𝑥) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))) | ||
Theorem | scutcut 27780 | Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No ∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) | ||
Theorem | scutcl 27781 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No ) | ||
Theorem | scutcld 27782 | Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024.) |
⊢ (𝜑 → 𝐴 <<s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) ∈ No ) | ||
Theorem | scutbday 27783* | The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ∩ ( bday “ {𝑥 ∈ No ∣ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)})) | ||
Theorem | eqscut 27784* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday ‘𝑋) = ∩ ( bday “ {𝑦 ∈ No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) | ||
Theorem | eqscut2 27785* | Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ∀𝑦 ∈ No ((𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑦))))) | ||
Theorem | sslttr 27786 | Transitive law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐵 <<s 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 <<s 𝐶) | ||
Theorem | ssltun1 27787 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶) → (𝐴 ∪ 𝐵) <<s 𝐶) | ||
Theorem | ssltun2 27788 | Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐴 <<s 𝐶) → 𝐴 <<s (𝐵 ∪ 𝐶)) | ||
Theorem | scutun12 27789 | Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) → ((𝐴 ∪ 𝐶) |s (𝐵 ∪ 𝐷)) = (𝐴 |s 𝐵)) | ||
Theorem | dmscut 27790 | The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.) |
⊢ dom |s = <<s | ||
Theorem | scutf 27791 | Functionality statement for the surreal cut operator. (Contributed by Scott Fenton, 15-Dec-2021.) |
⊢ |s : <<s ⟶ No | ||
Theorem | etasslt 27792* | A restatement of noeta 27722 using set less-than. (Contributed by Scott Fenton, 10-Aug-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ 𝑂)) | ||
Theorem | etasslt2 27793* | A version of etasslt 27792 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | ||
Theorem | scutbdaybnd 27794 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Aug-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝑂 ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ 𝑂) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂) | ||
Theorem | scutbdaybnd2 27795 | An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Dec-2021.) |
⊢ (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
Theorem | scutbdaybnd2lim 27796 | An upper bound on the birthday of a surreal cut when it is a limit birthday. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ∪ ( bday “ (𝐴 ∪ 𝐵))) | ||
Theorem | scutbdaylt 27797 | If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.) |
⊢ ((𝑋 ∈ No ∧ (𝐴 <<s {𝑋} ∧ {𝑋} <<s 𝐵) ∧ 𝑋 ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘𝑋)) | ||
Theorem | slerec 27798* | A comparison law for surreals considered as cuts of sets of surreals. Definition from [Conway] p. 4. Theorem 4 of [Alling] p. 186. Theorem 2.5 of [Gonshor] p. 9. (Contributed by Scott Fenton, 11-Dec-2021.) |
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) | ||
Theorem | sltrec 27799* | A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021.) |
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏 ∈ 𝐵 𝑏 ≤s 𝑌))) | ||
Theorem | ssltdisj 27800 | If 𝐴 preceeds 𝐵, then 𝐴 and 𝐵 are disjoint. (Contributed by Scott Fenton, 18-Sep-2024.) |
⊢ (𝐴 <<s 𝐵 → (𝐴 ∩ 𝐵) = ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |