![]() |
Metamath
Proof Explorer Theorem List (p. 278 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30159) |
![]() (30160-31682) |
![]() (31683-47806) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | istrkg2ld 27701* | Property of fulfilling the lower dimension 2 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) β β’ (πΊ β π β (πΊDimTarskiGβ₯2 β βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))) | ||
Theorem | istrkg3ld 27702* | Property of fulfilling the lower dimension 3 axiom. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) β β’ (πΊ β π β (πΊDimTarskiGβ₯3 β βπ’ β π βπ£ β π (π’ β π£ β§ βπ₯ β π βπ¦ β π βπ§ β π (((π’ β π₯) = (π£ β π₯) β§ (π’ β π¦) = (π£ β π¦) β§ (π’ β π§) = (π£ β π§)) β§ Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) | ||
Theorem | axtgcgrrflx 27703 | Axiom of reflexivity of congruence, Axiom A1 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β π) = (π β π)) | ||
Theorem | axtgcgrid 27704 | Axiom of identity of congruence, Axiom A3 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β π) = (π β π)) β β’ (π β π = π) | ||
Theorem | axtgsegcon 27705* | Axiom of segment construction, Axiom A4 of [Schwabhauser] p. 11. As discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive content [is that] given any line segment π΄π΅, one can construct a line segment congruent to it, starting at any point π and going in the direction of any ray containing π. The ray is determined by the point π and a second point π, the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point π§ whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β βπ§ β π (π β (ππΌπ§) β§ (π β π§) = (π΄ β π΅))) | ||
Theorem | axtg5seg 27706 | Five segments axiom, Axiom A5 of [Schwabhauser] p. 11. Take two triangles πππ and π΄πΆπ, a point π on ππ, and a point π΅ on π΄πΆ. If all corresponding line segments except for ππ and πΆπ are congruent ( i.e., ππ βΌ π΄π΅, ππ βΌ π΅πΆ, ππ βΌ π΄π, and ππ βΌ π΅π), then ππ and πΆπ are also congruent. As noted in Axiom 5 of [Tarski1999] p. 178, "this axiom is similar in character to the well-known theorems of Euclidean geometry that allow one to conclude, from hypotheses about the congruence of certain corresponding sides and angles in two triangles, the congruence of other corresponding sides and angles." (Contributed by Thierry Arnoux, 14-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β (π β π) = (π΄ β π΅)) & β’ (π β (π β π) = (π΅ β πΆ)) & β’ (π β (π β π) = (π΄ β π)) & β’ (π β (π β π) = (π΅ β π)) β β’ (π β (π β π) = (πΆ β π)) | ||
Theorem | axtgbtwnid 27707 | Identity of Betweenness. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) β β’ (π β π = π) | ||
Theorem | axtgpasch 27708* | Axiom of (Inner) Pasch, Axiom A7 of [Schwabhauser] p. 12. Given triangle πππ, point π in segment ππ, and point π in segment ππ, there exists a point π on both the segment ππ and the segment ππ. This axiom is essentially a subset of the general Pasch axiom. The general Pasch axiom asserts that on a plane "a line intersecting a triangle in one of its sides, and not intersecting any of the vertices, must intersect one of the other two sides" (per the discussion about Axiom 7 of [Tarski1999] p. 179). The (general) Pasch axiom was used implicitly by Euclid, but never stated; Moritz Pasch discovered its omission in 1882. As noted in the Metamath book, this means that the omission of Pasch's axiom from Euclid went unnoticed for 2000 years. Only the inner Pasch algorithm is included as an axiom; the "outer" form of the Pasch axiom can be proved using the inner form (see theorem 9.6 of [Schwabhauser] p. 69 and the brief discussion in axiom 7.1 of [Tarski1999] p. 180). (Contributed by Thierry Arnoux, 15-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) & β’ (π β π β (ππΌπ)) β β’ (π β βπ β π (π β (ππΌπ) β§ π β (ππΌπ))) | ||
Theorem | axtgcont1 27709* | Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. This axiom (scheme) asserts that any two sets π and π (of points) such that the elements of π precede the elements of π with respect to some point π (that is, π₯ is between π and π¦ whenever π₯ is in π and π¦ is in π) are separated by some point π; this is explained in Axiom 11 of [Tarski1999] p. 185. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (βπ β π βπ₯ β π βπ¦ β π π₯ β (ππΌπ¦) β βπ β π βπ₯ β π βπ¦ β π π β (π₯πΌπ¦))) | ||
Theorem | axtgcont 27710* | Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. For more information see axtgcont1 27709. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π΄ β π) & β’ ((π β§ π’ β π β§ π£ β π) β π’ β (π΄πΌπ£)) β β’ (π β βπ β π βπ₯ β π βπ¦ β π π β (π₯πΌπ¦)) | ||
Theorem | axtglowdim2 27711* | Lower dimension axiom for dimension 2, Axiom A8 of [Schwabhauser] p. 13. There exist 3 non-colinear points. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β π) & β’ (π β πΊDimTarskiGβ₯2) β β’ (π β βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) | ||
Theorem | axtgupdim2 27712 | Upper dimension axiom for dimension 2, Axiom A9 of [Schwabhauser] p. 13. Three points π, π and π equidistant to two given two points π and π must be colinear. (Contributed by Thierry Arnoux, 29-May-2019.) (Revised by Thierry Arnoux, 11-Jul-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β π) = (π β π)) & β’ (π β (π β π) = (π β π)) & β’ (π β (π β π) = (π β π)) & β’ (π β πΊ β π) & β’ (π β Β¬ πΊDimTarskiGβ₯3) β β’ (π β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ))) | ||
Theorem | axtgeucl 27713* | Euclid's Axiom. Axiom A10 of [Schwabhauser] p. 13. This is equivalent to Euclid's parallel postulate when combined with other axioms. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiGE) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) & β’ (π β π β (ππΌπ)) & β’ (π β π β π) β β’ (π β βπ β π βπ β π (π β (ππΌπ) β§ π β (ππΌπ) β§ π β (ππΌπ))) | ||
Theorem | tgjustf 27714* | Given any function πΉ, equality of the image by πΉ is an equivalence relation. (Contributed by Thierry Arnoux, 25-Jan-2023.) |
β’ (π΄ β π β βπ(π Er π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ππ¦ β (πΉβπ₯) = (πΉβπ¦)))) | ||
Theorem | tgjustr 27715* | Given any equivalence relation π , one can define a function π such that all elements of an equivalence classe of π have the same image by π. (Contributed by Thierry Arnoux, 25-Jan-2023.) |
β’ ((π΄ β π β§ π Er π΄) β βπ(π Fn π΄ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯π π¦ β (πβπ₯) = (πβπ¦)))) | ||
Theorem | tgjustc1 27716* | A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) β β’ βπ(π Er (π Γ π) β§ βπ€ β π βπ₯ β π βπ¦ β π βπ§ β π (β¨π€, π₯β©πβ¨π¦, π§β© β (π€ β π₯) = (π¦ β π§))) | ||
Theorem | tgjustc2 27717* | A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.) |
β’ π = (BaseβπΊ) & β’ π Er (π Γ π) β β’ βπ(π Fn (π Γ π) β§ βπ€ β π βπ₯ β π βπ¦ β π βπ§ β π (β¨π€, π₯β©π β¨π¦, π§β© β (π€ππ₯) = (π¦ππ§))) | ||
Theorem | tgcgrcomimp 27718 | Congruence commutes on the RHS. Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by David A. Wheeler, 29-Jun-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β ((π΄ β π΅) = (πΆ β π·) β (π΄ β π΅) = (π· β πΆ))) | ||
Theorem | tgcgrcomr 27719 | Congruence commutes on the RHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π΄ β π΅) = (πΆ β π·)) β β’ (π β (π΄ β π΅) = (π· β πΆ)) | ||
Theorem | tgcgrcoml 27720 | Congruence commutes on the LHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π΄ β π΅) = (πΆ β π·)) β β’ (π β (π΅ β π΄) = (πΆ β π·)) | ||
Theorem | tgcgrcomlr 27721 | Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π΄ β π΅) = (πΆ β π·)) β β’ (π β (π΅ β π΄) = (π· β πΆ)) | ||
Theorem | tgcgreqb 27722 | Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π΄ β π΅) = (πΆ β π·)) β β’ (π β (π΄ = π΅ β πΆ = π·)) | ||
Theorem | tgcgreq 27723 | Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π΄ β π΅) = (πΆ β π·)) & β’ (π β π΄ = π΅) β β’ (π β πΆ = π·) | ||
Theorem | tgcgrneq 27724 | Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π΄ β π΅) = (πΆ β π·)) & β’ (π β π΄ β π΅) β β’ (π β πΆ β π·) | ||
Theorem | tgcgrtriv 27725 | Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β (π΄ β π΄) = (π΅ β π΅)) | ||
Theorem | tgcgrextend 27726 | Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) (Shortened by David A. Wheeler and Thierry Arnoux, 22-Apr-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β πΈ β (π·πΌπΉ)) & β’ (π β (π΄ β π΅) = (π· β πΈ)) & β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) β β’ (π β (π΄ β πΆ) = (π· β πΉ)) | ||
Theorem | tgsegconeq 27727 | Two points that satisfy the conclusion of axtgsegcon 27705 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π· β π΄) & β’ (π β π΄ β (π·πΌπΈ)) & β’ (π β π΄ β (π·πΌπΉ)) & β’ (π β (π΄ β πΈ) = (π΅ β πΆ)) & β’ (π β (π΄ β πΉ) = (π΅ β πΆ)) β β’ (π β πΈ = πΉ) | ||
Theorem | tgbtwntriv2 27728 | Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β π΅ β (π΄πΌπ΅)) | ||
Theorem | tgbtwncom 27729 | Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π΅ β (π΄πΌπΆ)) β β’ (π β π΅ β (πΆπΌπ΄)) | ||
Theorem | tgbtwncomb 27730 | Betweenness commutes, biconditional version. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) β β’ (π β (π΅ β (π΄πΌπΆ) β π΅ β (πΆπΌπ΄))) | ||
Theorem | tgbtwnne 27731 | Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β π΅ β π΄) β β’ (π β π΄ β πΆ) | ||
Theorem | tgbtwntriv1 27732 | Betweenness always holds for the first endpoint. Theorem 3.3 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β π΄ β (π΄πΌπ΅)) | ||
Theorem | tgbtwnswapid 27733 | If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π΄ β (π΅πΌπΆ)) & β’ (π β π΅ β (π΄πΌπΆ)) β β’ (π β π΄ = π΅) | ||
Theorem | tgbtwnintr 27734 | Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΄ β (π΅πΌπ·)) & β’ (π β π΅ β (πΆπΌπ·)) β β’ (π β π΅ β (π΄πΌπΆ)) | ||
Theorem | tgbtwnexch3 27735 | Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β πΆ β (π΄πΌπ·)) β β’ (π β πΆ β (π΅πΌπ·)) | ||
Theorem | tgbtwnouttr2 27736 | Outer transitivity law for betweenness. Left-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΅ β πΆ) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β πΆ β (π΅πΌπ·)) β β’ (π β πΆ β (π΄πΌπ·)) | ||
Theorem | tgbtwnexch2 27737 | Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΅ β (π΄πΌπ·)) & β’ (π β πΆ β (π΅πΌπ·)) β β’ (π β πΆ β (π΄πΌπ·)) | ||
Theorem | tgbtwnouttr 27738 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΅ β πΆ) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β πΆ β (π΅πΌπ·)) β β’ (π β π΅ β (π΄πΌπ·)) | ||
Theorem | tgbtwnexch 27739 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β πΆ β (π΄πΌπ·)) β β’ (π β π΅ β (π΄πΌπ·)) | ||
Theorem | tgtrisegint 27740* | A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β πΈ β (π·πΌπΆ)) & β’ (π β πΉ β (π΄πΌπ·)) β β’ (π β βπ β π (π β (πΉπΌπΆ) β§ π β (π΅πΌπΈ))) | ||
Theorem | tglowdim1 27741* | Lower dimension axiom for one dimension. In dimension at least 1, there are at least two distinct points. The condition "the space is of dimension 1 or more" is written here as 2 β€ (β―βπ) to avoid a new definition, but a different convention could be chosen. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β 2 β€ (β―βπ)) β β’ (π β βπ₯ β π βπ¦ β π π₯ β π¦) | ||
Theorem | tglowdim1i 27742* | Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β 2 β€ (β―βπ)) & β’ (π β π β π) β β’ (π β βπ¦ β π π β π¦) | ||
Theorem | tgldimor 27743 | Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
β’ π = (πΈβπΉ) & β’ (π β π΄ β π) β β’ (π β ((β―βπ) = 1 β¨ 2 β€ (β―βπ))) | ||
Theorem | tgldim0eq 27744 | In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
β’ π = (πΈβπΉ) & β’ (π β (β―βπ) = 1) & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β π΄ = π΅) | ||
Theorem | tgldim0itv 27745 | In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 12-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β (β―βπ) = 1) β β’ (π β π΄ β (π΅πΌπΆ)) | ||
Theorem | tgldim0cgr 27746 | In dimension zero, any two pairs of points are congruent. (Contributed by Thierry Arnoux, 12-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β (β―βπ) = 1) & β’ (π β π· β π) β β’ (π β (π΄ β π΅) = (πΆ β π·)) | ||
Theorem | tgbtwndiff 27747* | There is always a π distinct from π΅ such that π΅ lies between π΄ and π. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 β€ (β―βπ) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β 2 β€ (β―βπ)) β β’ (π β βπ β π (π΅ β (π΄πΌπ) β§ π΅ β π)) | ||
Theorem | tgdim01 27748 | In geometries of dimension less than 2, all points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β π) & β’ (π β Β¬ πΊDimTarskiGβ₯2) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ))) | ||
Theorem | tgifscgr 27749 | Inner five segment congruence. Take two triangles, π΄π·πΆ and πΈπ»πΎ, with π΅ between π΄ and πΆ and πΉ between πΈ and πΎ. If the other components of the triangles are congruent, then so are π΅π· and πΉπ». Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 24-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β πΎ β π) & β’ (π β π» β π) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β πΉ β (πΈπΌπΎ)) & β’ (π β (π΄ β πΆ) = (πΈ β πΎ)) & β’ (π β (π΅ β πΆ) = (πΉ β πΎ)) & β’ (π β (π΄ β π·) = (πΈ β π»)) & β’ (π β (πΆ β π·) = (πΎ β π»)) β β’ (π β (π΅ β π·) = (πΉ β π»)) | ||
Theorem | tgcgrsub 27750 | Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β πΈ β (π·πΌπΉ)) & β’ (π β (π΄ β πΆ) = (π· β πΉ)) & β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) β β’ (π β (π΄ β π΅) = (π· β πΈ)) | ||
Syntax | ccgrg 27751 | Declare the constant for the congruence between shapes relation. |
class cgrG | ||
Definition | df-cgrg 27752* |
Define the relation of congruence between shapes. Definition 4.4 of
[Schwabhauser] p. 35. A
"shape" is a finite sequence of points, and a
triangle can be represented as a shape with three points. Two shapes
are congruent if all corresponding segments between all corresponding
points are congruent.
Many systems of geometry define triangle congruence as requiring both segment congruence and angle congruence. Such systems, such as Hilbert's axiomatic system, typically have a primitive notion of angle congruence in addition to segment congruence. Here, angle congruence is instead a derived notion, defined later in df-cgra 28049 and expanded in iscgra 28050. This does not mean our system is weaker; dfcgrg2 28104 proves that these two definitions are equivalent, and using the Tarski definition instead (given in [Schwabhauser] p. 35) is simpler. Once two triangles are proven congruent as defined here, you can use various theorems to prove that corresponding parts of congruent triangles are congruent (CPCTC). For example, see cgr3simp1 27761, cgr3simp2 27762, cgr3simp3 27763, cgrcgra 28062, and permutation laws such as cgr3swap12 27764 and dfcgrg2 28104. Ideally, we would define this for functions of any set, but we will use words (see df-word 14462) in most cases. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ cgrG = (π β V β¦ {β¨π, πβ© β£ ((π β ((Baseβπ) βpm β) β§ π β ((Baseβπ) βpm β)) β§ (dom π = dom π β§ βπ β dom πβπ β dom π((πβπ)(distβπ)(πβπ)) = ((πβπ)(distβπ)(πβπ))))}) | ||
Theorem | iscgrg 27753* | The congruence property for sequences of points. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ βΌ = (cgrGβπΊ) β β’ (πΊ β π β (π΄ βΌ π΅ β ((π΄ β (π βpm β) β§ π΅ β (π βpm β)) β§ (dom π΄ = dom π΅ β§ βπ β dom π΄βπ β dom π΄((π΄βπ) β (π΄βπ)) = ((π΅βπ) β (π΅βπ)))))) | ||
Theorem | iscgrgd 27754* | The property for two sequences π΄ and π΅ of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β π) & β’ (π β π· β β) & β’ (π β π΄:π·βΆπ) & β’ (π β π΅:π·βΆπ) β β’ (π β (π΄ βΌ π΅ β βπ β dom π΄βπ β dom π΄((π΄βπ) β (π΄βπ)) = ((π΅βπ) β (π΅βπ)))) | ||
Theorem | iscgrglt 27755* | The property for two sequences π΄ and π΅ of points to be congruent, where the congruence is only required for indices verifying a less-than relation. (Contributed by Thierry Arnoux, 7-Oct-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π· β β) & β’ (π β π΄:π·βΆπ) & β’ (π β π΅:π·βΆπ) β β’ (π β (π΄ βΌ π΅ β βπ β dom π΄βπ β dom π΄(π < π β ((π΄βπ) β (π΄βπ)) = ((π΅βπ) β (π΅βπ))))) | ||
Theorem | trgcgrg 27756 | The property for two triangles to be congruent to each other. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) β β’ (π β (β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ© β ((π΄ β π΅) = (π· β πΈ) β§ (π΅ β πΆ) = (πΈ β πΉ) β§ (πΆ β π΄) = (πΉ β π·)))) | ||
Theorem | trgcgr 27757 | Triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β (π΄ β π΅) = (π· β πΈ)) & β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) & β’ (π β (πΆ β π΄) = (πΉ β π·)) β β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) | ||
Theorem | ercgrg 27758 | The shape congruence relation is an equivalence relation. Statement 4.4 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.) |
β’ π = (BaseβπΊ) β β’ (πΊ β TarskiG β (cgrGβπΊ) Er (π βpm β)) | ||
Theorem | tgcgrxfr 27759* | A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΉ β π) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β (π΄ β πΆ) = (π· β πΉ)) β β’ (π β βπ β π (π β (π·πΌπΉ) β§ β¨βπ΄π΅πΆββ© βΌ β¨βπ·ππΉββ©)) | ||
Theorem | cgr3id 27760 | Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) β β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ΄π΅πΆββ©) | ||
Theorem | cgr3simp1 27761 | Deduce segment congruence from a triangle congruence. This is a portion of the theorem that corresponding parts of congruent triangles are congruent (CPCTC), focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β (π΄ β π΅) = (π· β πΈ)) | ||
Theorem | cgr3simp2 27762 | Deduce segment congruence from a triangle congruence. This is a portion of CPCTC, focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) | ||
Theorem | cgr3simp3 27763 | Deduce segment congruence from a triangle congruence. This is a portion of CPCTC, focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β (πΆ β π΄) = (πΉ β π·)) | ||
Theorem | cgr3swap12 27764 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β β¨βπ΅π΄πΆββ© βΌ β¨βπΈπ·πΉββ©) | ||
Theorem | cgr3swap23 27765 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β β¨βπ΄πΆπ΅ββ© βΌ β¨βπ·πΉπΈββ©) | ||
Theorem | cgr3swap13 27766 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 3-Oct-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β β¨βπΆπ΅π΄ββ© βΌ β¨βπΉπΈπ·ββ©) | ||
Theorem | cgr3rotr 27767 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β β¨βπΆπ΄π΅ββ© βΌ β¨βπΉπ·πΈββ©) | ||
Theorem | cgr3rotl 27768 | Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β β¨βπ΅πΆπ΄ββ© βΌ β¨βπΈπΉπ·ββ©) | ||
Theorem | trgcgrcom 27769 | Commutative law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) β β’ (π β β¨βπ·πΈπΉββ© βΌ β¨βπ΄π΅πΆββ©) | ||
Theorem | cgr3tr 27770 | Transitivity law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) & β’ (π β π½ β π) & β’ (π β πΎ β π) & β’ (π β πΏ β π) & β’ (π β β¨βπ·πΈπΉββ© βΌ β¨βπ½πΎπΏββ©) β β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ½πΎπΏββ©) | ||
Theorem | tgbtwnxfr 27771 | A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) & β’ (π β π΅ β (π΄πΌπΆ)) β β’ (π β πΈ β (π·πΌπΉ)) | ||
Theorem | tgcgr4 27772 | Two quadrilaterals to be congruent to each other if one triangle formed by their vertices is, and the additional points are equidistant too. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (β¨βπ΄π΅πΆπ·ββ© βΌ β¨βππππββ© β (β¨βπ΄π΅πΆββ© βΌ β¨βπππββ© β§ ((π΄ β π·) = (π β π) β§ (π΅ β π·) = (π β π) β§ (πΆ β π·) = (π β π))))) | ||
Syntax | cismt 27773 | Declare the constant for the isometry builder. |
class Ismt | ||
Definition | df-ismt 27774* | Define the set of isometries between two structures. Definition 4.8 of [Schwabhauser] p. 36. See isismt 27775. (Contributed by Thierry Arnoux, 13-Dec-2019.) |
β’ Ismt = (π β V, β β V β¦ {π β£ (π:(Baseβπ)β1-1-ontoβ(Baseββ) β§ βπ β (Baseβπ)βπ β (Baseβπ)((πβπ)(distββ)(πβπ)) = (π(distβπ)π))}) | ||
Theorem | isismt 27775* | Property of being an isometry. Compare with isismty 36658. (Contributed by Thierry Arnoux, 13-Dec-2019.) |
β’ π΅ = (BaseβπΊ) & β’ π = (Baseβπ») & β’ π· = (distβπΊ) & β’ β = (distβπ») β β’ ((πΊ β π β§ π» β π) β (πΉ β (πΊIsmtπ») β (πΉ:π΅β1-1-ontoβπ β§ βπ β π΅ βπ β π΅ ((πΉβπ) β (πΉβπ)) = (ππ·π)))) | ||
Theorem | ismot 27776* | Property of being an isometry mapping to the same space. In geometry, this is also called a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) β β’ (πΊ β π β (πΉ β (πΊIsmtπΊ) β (πΉ:πβ1-1-ontoβπ β§ βπ β π βπ β π ((πΉβπ) β (πΉβπ)) = (π β π)))) | ||
Theorem | motcgr 27777 | Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β π) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΉ β (πΊIsmtπΊ)) β β’ (π β ((πΉβπ΄) β (πΉβπ΅)) = (π΄ β π΅)) | ||
Theorem | idmot 27778 | The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β π) β β’ (π β ( I βΎ π) β (πΊIsmtπΊ)) | ||
Theorem | motf1o 27779 | Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β π) & β’ (π β πΉ β (πΊIsmtπΊ)) β β’ (π β πΉ:πβ1-1-ontoβπ) | ||
Theorem | motcl 27780 | Closure of motions. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β π) & β’ (π β πΉ β (πΊIsmtπΊ)) & β’ (π β π΄ β π) β β’ (π β (πΉβπ΄) β π) | ||
Theorem | motco 27781 | The composition of two motions is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β π) & β’ (π β πΉ β (πΊIsmtπΊ)) & β’ (π β π» β (πΊIsmtπΊ)) β β’ (π β (πΉ β π») β (πΊIsmtπΊ)) | ||
Theorem | cnvmot 27782 | The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β π) & β’ (π β πΉ β (πΊIsmtπΊ)) β β’ (π β β‘πΉ β (πΊIsmtπΊ)) | ||
Theorem | motplusg 27783* | The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β π) & β’ πΌ = {β¨(Baseβndx), (πΊIsmtπΊ)β©, β¨(+gβndx), (π β (πΊIsmtπΊ), π β (πΊIsmtπΊ) β¦ (π β π))β©} & β’ (π β πΉ β (πΊIsmtπΊ)) & β’ (π β π» β (πΊIsmtπΊ)) β β’ (π β (πΉ(+gβπΌ)π») = (πΉ β π»)) | ||
Theorem | motgrp 27784* | The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β π) & β’ πΌ = {β¨(Baseβndx), (πΊIsmtπΊ)β©, β¨(+gβndx), (π β (πΊIsmtπΊ), π β (πΊIsmtπΊ) β¦ (π β π))β©} β β’ (π β πΌ β Grp) | ||
Theorem | motcgrg 27785* | Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ (π β πΊ β π) & β’ πΌ = {β¨(Baseβndx), (πΊIsmtπΊ)β©, β¨(+gβndx), (π β (πΊIsmtπΊ), π β (πΊIsmtπΊ) β¦ (π β π))β©} & β’ βΌ = (cgrGβπΊ) & β’ (π β π β Word π) & β’ (π β πΉ β (πΊIsmtπΊ)) β β’ (π β (πΉ β π) βΌ π) | ||
Theorem | motcgr3 27786 | Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ βΌ = (cgrGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· = (π»βπ΄)) & β’ (π β πΈ = (π»βπ΅)) & β’ (π β πΉ = (π»βπΆ)) & β’ (π β π» β (πΊIsmtπΊ)) β β’ (π β β¨βπ΄π΅πΆββ© βΌ β¨βπ·πΈπΉββ©) | ||
Theorem | tglng 27787* | Lines of a Tarski Geometry. This relates to both Definition 4.10 of [Schwabhauser] p. 36. and Definition 6.14 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) β β’ (πΊ β TarskiG β πΏ = (π₯ β π, π¦ β (π β {π₯}) β¦ {π§ β π β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))})) | ||
Theorem | tglnfn 27788 | Lines as functions. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) β β’ (πΊ β TarskiG β πΏ Fn ((π Γ π) β I )) | ||
Theorem | tglnunirn 27789 | Lines are sets of points. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) β β’ (πΊ β TarskiG β βͺ ran πΏ β π) | ||
Theorem | tglnpt 27790 | Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π β π΄) β β’ (π β π β π) | ||
Theorem | tglngne 27791 | It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΏπ)) β β’ (π β π β π) | ||
Theorem | tglngval 27792* | The line going through points π and π. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (ππΏπ) = {π§ β π β£ (π§ β (ππΌπ) β¨ π β (π§πΌπ) β¨ π β (ππΌπ§))}) | ||
Theorem | tglnssp 27793 | Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (ππΏπ) β π) | ||
Theorem | tgellng 27794 | Property of lying on the line going through points π and π. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation π β (π(LineGβπΊ)π) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β (ππΏπ) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) | ||
Theorem | tgcolg 27795 | We choose the notation (π β (ππΏπ) β¨ π = π) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((π β (ππΏπ) β¨ π = π) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) | ||
Theorem | btwncolg1 27796 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) β β’ (π β (π β (ππΏπ) β¨ π = π)) | ||
Theorem | btwncolg2 27797 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) β β’ (π β (π β (ππΏπ) β¨ π = π)) | ||
Theorem | btwncolg3 27798 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) β β’ (π β (π β (ππΏπ) β¨ π = π)) | ||
Theorem | colcom 27799 | Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (ππΏπ) β¨ π = π)) β β’ (π β (π β (ππΏπ) β¨ π = π)) | ||
Theorem | colrot1 27800 | Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (ππΏπ) β¨ π = π)) β β’ (π β (π β (ππΏπ) β¨ π = π)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |