MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noeta2 Structured version   Visualization version   GIF version

Theorem noeta2 27765
Description: A version of noeta 27724 with fewer hypotheses but a weaker upper bound (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
noeta2 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem noeta2
StepHypRef Expression
1 id 22 . 2 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → ((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦))
2 bdayfo 27658 . . . . . . 7 bday : No onto→On
3 fofun 6801 . . . . . . 7 ( bday : No onto→On → Fun bday )
42, 3ax-mp 5 . . . . . 6 Fun bday
5 simp1r 1198 . . . . . . 7 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → 𝐴𝑉)
6 simp2r 1200 . . . . . . 7 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → 𝐵𝑊)
7 unexg 7745 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
85, 6, 7syl2anc 584 . . . . . 6 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → (𝐴𝐵) ∈ V)
9 funimaexg 6633 . . . . . 6 ((Fun bday ∧ (𝐴𝐵) ∈ V) → ( bday “ (𝐴𝐵)) ∈ V)
104, 8, 9sylancr 587 . . . . 5 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → ( bday “ (𝐴𝐵)) ∈ V)
1110uniexd 7744 . . . 4 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → ( bday “ (𝐴𝐵)) ∈ V)
12 imassrn 6069 . . . . . . 7 ( bday “ (𝐴𝐵)) ⊆ ran bday
13 forn 6803 . . . . . . . 8 ( bday : No onto→On → ran bday = On)
142, 13ax-mp 5 . . . . . . 7 ran bday = On
1512, 14sseqtri 4012 . . . . . 6 ( bday “ (𝐴𝐵)) ⊆ On
16 ssorduni 7781 . . . . . 6 (( bday “ (𝐴𝐵)) ⊆ On → Ord ( bday “ (𝐴𝐵)))
1715, 16ax-mp 5 . . . . 5 Ord ( bday “ (𝐴𝐵))
18 elon2 6374 . . . . 5 ( ( bday “ (𝐴𝐵)) ∈ On ↔ (Ord ( bday “ (𝐴𝐵)) ∧ ( bday “ (𝐴𝐵)) ∈ V))
1917, 18mpbiran 709 . . . 4 ( ( bday “ (𝐴𝐵)) ∈ On ↔ ( bday “ (𝐴𝐵)) ∈ V)
2011, 19sylibr 234 . . 3 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → ( bday “ (𝐴𝐵)) ∈ On)
21 onsucb 7819 . . 3 ( ( bday “ (𝐴𝐵)) ∈ On ↔ suc ( bday “ (𝐴𝐵)) ∈ On)
2220, 21sylib 218 . 2 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → suc ( bday “ (𝐴𝐵)) ∈ On)
23 onsucuni 7830 . . 3 (( bday “ (𝐴𝐵)) ⊆ On → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
2415, 23mp1i 13 . 2 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
25 noeta 27724 . 2 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) ∧ (suc ( bday “ (𝐴𝐵)) ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))))
261, 22, 24, 25syl12anc 836 1 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → ∃𝑧 No (∀𝑥𝐴 𝑥 <s 𝑧 ∧ ∀𝑦𝐵 𝑧 <s 𝑦 ∧ ( bday 𝑧) ⊆ suc ( bday “ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  Vcvv 3463  cun 3929  wss 3931   cuni 4887   class class class wbr 5123  ran crn 5666  cima 5668  Ord word 6362  Oncon0 6363  suc csuc 6365  Fun wfun 6535  ontowfo 6539  cfv 6541   No csur 27620   <s cslt 27621   bday cbday 27622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-1o 8488  df-2o 8489  df-no 27623  df-slt 27624  df-bday 27625
This theorem is referenced by:  conway  27780
  Copyright terms: Public domain W3C validator