| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sets | Structured version Visualization version GIF version | ||
| Description: Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 17160 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 20044, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| df-sets | ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csts 17092 | . 2 class sSet | |
| 2 | vs | . . 3 setvar 𝑠 | |
| 3 | ve | . . 3 setvar 𝑒 | |
| 4 | cvv 3438 | . . 3 class V | |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑠 |
| 6 | 3 | cv 1539 | . . . . . . . 8 class 𝑒 |
| 7 | 6 | csn 4579 | . . . . . . 7 class {𝑒} |
| 8 | 7 | cdm 5623 | . . . . . 6 class dom {𝑒} |
| 9 | 4, 8 | cdif 3902 | . . . . 5 class (V ∖ dom {𝑒}) |
| 10 | 5, 9 | cres 5625 | . . . 4 class (𝑠 ↾ (V ∖ dom {𝑒})) |
| 11 | 10, 7 | cun 3903 | . . 3 class ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) |
| 12 | 2, 3, 4, 4, 11 | cmpo 7355 | . 2 class (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
| 13 | 1, 12 | wceq 1540 | 1 wff sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldmsets 17094 setsvalg 17095 |
| Copyright terms: Public domain | W3C validator |