![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sets | Structured version Visualization version GIF version |
Description: Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 16337 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 18953, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
df-sets | ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csts 16327 | . 2 class sSet | |
2 | vs | . . 3 setvar 𝑠 | |
3 | ve | . . 3 setvar 𝑒 | |
4 | cvv 3409 | . . 3 class V | |
5 | 2 | cv 1506 | . . . . 5 class 𝑠 |
6 | 3 | cv 1506 | . . . . . . . 8 class 𝑒 |
7 | 6 | csn 4435 | . . . . . . 7 class {𝑒} |
8 | 7 | cdm 5400 | . . . . . 6 class dom {𝑒} |
9 | 4, 8 | cdif 3822 | . . . . 5 class (V ∖ dom {𝑒}) |
10 | 5, 9 | cres 5402 | . . . 4 class (𝑠 ↾ (V ∖ dom {𝑒})) |
11 | 10, 7 | cun 3823 | . . 3 class ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) |
12 | 2, 3, 4, 4, 11 | cmpo 6972 | . 2 class (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
13 | 1, 12 | wceq 1507 | 1 wff sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
Colors of variables: wff setvar class |
This definition is referenced by: reldmsets 16357 setsvalg 16358 |
Copyright terms: Public domain | W3C validator |