MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sets Structured version   Visualization version   GIF version

Definition df-sets 17181
Description: Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 17250 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 20099, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
df-sets sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
Distinct variable group:   𝑒,𝑠

Detailed syntax breakdown of Definition df-sets
StepHypRef Expression
1 csts 17180 . 2 class sSet
2 vs . . 3 setvar 𝑠
3 ve . . 3 setvar 𝑒
4 cvv 3459 . . 3 class V
52cv 1539 . . . . 5 class 𝑠
63cv 1539 . . . . . . . 8 class 𝑒
76csn 4601 . . . . . . 7 class {𝑒}
87cdm 5654 . . . . . 6 class dom {𝑒}
94, 8cdif 3923 . . . . 5 class (V ∖ dom {𝑒})
105, 9cres 5656 . . . 4 class (𝑠 ↾ (V ∖ dom {𝑒}))
1110, 7cun 3924 . . 3 class ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})
122, 3, 4, 4, 11cmpo 7405 . 2 class (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
131, 12wceq 1540 1 wff sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
Colors of variables: wff setvar class
This definition is referenced by:  reldmsets  17182  setsvalg  17183
  Copyright terms: Public domain W3C validator