MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sets Structured version   Visualization version   GIF version

Definition df-sets 17101
Description: Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 17178 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 20029, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
df-sets sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
Distinct variable group:   𝑒,𝑠

Detailed syntax breakdown of Definition df-sets
StepHypRef Expression
1 csts 17100 . 2 class sSet
2 vs . . 3 setvar 𝑠
3 ve . . 3 setvar 𝑒
4 cvv 3472 . . 3 class V
52cv 1538 . . . . 5 class 𝑠
63cv 1538 . . . . . . . 8 class 𝑒
76csn 4627 . . . . . . 7 class {𝑒}
87cdm 5675 . . . . . 6 class dom {𝑒}
94, 8cdif 3944 . . . . 5 class (V ∖ dom {𝑒})
105, 9cres 5677 . . . 4 class (𝑠 ↾ (V ∖ dom {𝑒}))
1110, 7cun 3945 . . 3 class ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})
122, 3, 4, 4, 11cmpo 7413 . 2 class (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
131, 12wceq 1539 1 wff sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
Colors of variables: wff setvar class
This definition is referenced by:  reldmsets  17102  setsvalg  17103
  Copyright terms: Public domain W3C validator