MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sets Structured version   Visualization version   GIF version

Definition df-sets 16910
Description: Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 16987 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 19766, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
df-sets sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
Distinct variable group:   𝑒,𝑠

Detailed syntax breakdown of Definition df-sets
StepHypRef Expression
1 csts 16909 . 2 class sSet
2 vs . . 3 setvar 𝑠
3 ve . . 3 setvar 𝑒
4 cvv 3437 . . 3 class V
52cv 1538 . . . . 5 class 𝑠
63cv 1538 . . . . . . . 8 class 𝑒
76csn 4565 . . . . . . 7 class {𝑒}
87cdm 5600 . . . . . 6 class dom {𝑒}
94, 8cdif 3889 . . . . 5 class (V ∖ dom {𝑒})
105, 9cres 5602 . . . 4 class (𝑠 ↾ (V ∖ dom {𝑒}))
1110, 7cun 3890 . . 3 class ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})
122, 3, 4, 4, 11cmpo 7309 . 2 class (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
131, 12wceq 1539 1 wff sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
Colors of variables: wff setvar class
This definition is referenced by:  reldmsets  16911  setsvalg  16912
  Copyright terms: Public domain W3C validator