![]() |
Metamath
Proof Explorer Theorem List (p. 172 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | modxai 17101 | Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) & ⊢ (𝐵 + 𝐶) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | mod2xi 17102 | Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (2 · 𝐵) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | modxp1i 17103 | Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (𝐵 + 1) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | mod2xnegi 17104 | Version of mod2xi 17102 with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐿 mod 𝑁) & ⊢ (2 · 𝐵) = 𝐸 & ⊢ (𝐿 + 𝐾) = 𝑁 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | modsubi 17105 | Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (𝑀 + 𝐵) = 𝐾 ⇒ ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) | ||
Theorem | gcdi 17106 | Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ (𝑁 gcd 𝑅) = 𝐺 & ⊢ ((𝐾 · 𝑁) + 𝑅) = 𝑀 ⇒ ⊢ (𝑀 gcd 𝑁) = 𝐺 | ||
Theorem | gcdmodi 17107 | Calculate a GCD via Euclid's algorithm. Theorem 5.6 in [ApostolNT] p. 109. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ & ⊢ (𝐾 mod 𝑁) = (𝑅 mod 𝑁) & ⊢ (𝑁 gcd 𝑅) = 𝐺 ⇒ ⊢ (𝐾 gcd 𝑁) = 𝐺 | ||
Theorem | decexp2 17108 | Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 2) = 𝑁 ⇒ ⊢ ((4 · (2↑𝑀)) + 0) = (2↑𝑁) | ||
Theorem | numexp0 17109 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴↑0) = 1 | ||
Theorem | numexp1 17110 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴↑1) = 𝐴 | ||
Theorem | numexpp1 17111 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 1) = 𝑁 & ⊢ ((𝐴↑𝑀) · 𝐴) = 𝐶 ⇒ ⊢ (𝐴↑𝑁) = 𝐶 | ||
Theorem | numexp2x 17112 | Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (2 · 𝑀) = 𝑁 & ⊢ (𝐴↑𝑀) = 𝐷 & ⊢ (𝐷 · 𝐷) = 𝐶 ⇒ ⊢ (𝐴↑𝑁) = 𝐶 | ||
Theorem | decsplit0b 17113 | Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑0)) + 𝐵) = (𝐴 + 𝐵) | ||
Theorem | decsplit0 17114 | Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑0)) + 0) = 𝐴 | ||
Theorem | decsplit1 17115 | Split a decimal number into two parts. Base case: 𝑁 = 1. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑1)) + 𝐵) = ;𝐴𝐵 | ||
Theorem | decsplit 17116 | Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 1) = 𝑁 & ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 ⇒ ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 | ||
Theorem | karatsuba 17117 | The Karatsuba multiplication algorithm. If 𝑋 and 𝑌 are decomposed into two groups of digits of length 𝑀 (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then 𝑋𝑌 can be written in three groups of digits, where each group needs only one multiplication. Thus, we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 12795. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑆 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐴 · 𝐶) = 𝑅 & ⊢ (𝐵 · 𝐷) = 𝑇 & ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇) & ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝑋 & ⊢ ((𝐶 · (;10↑𝑀)) + 𝐷) = 𝑌 & ⊢ ((𝑅 · (;10↑𝑀)) + 𝑆) = 𝑊 & ⊢ ((𝑊 · (;10↑𝑀)) + 𝑇) = 𝑍 ⇒ ⊢ (𝑋 · 𝑌) = 𝑍 | ||
Theorem | 2exp4 17118 | Two to the fourth power is 16. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (2↑4) = ;16 | ||
Theorem | 2exp5 17119 | Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.) |
⊢ (2↑5) = ;32 | ||
Theorem | 2exp6 17120 | Two to the sixth power is 64. (Contributed by Mario Carneiro, 20-Apr-2015.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ (2↑6) = ;64 | ||
Theorem | 2exp7 17121 | Two to the seventh power is 128. (Contributed by AV, 16-Aug-2021.) |
⊢ (2↑7) = ;;128 | ||
Theorem | 2exp8 17122 | Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (2↑8) = ;;256 | ||
Theorem | 2exp11 17123 | Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
⊢ (2↑;11) = ;;;2048 | ||
Theorem | 2exp16 17124 | Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (2↑;16) = ;;;;65536 | ||
Theorem | 3exp3 17125 | Three to the third power is 27. (Contributed by Mario Carneiro, 20-Apr-2015.) |
⊢ (3↑3) = ;27 | ||
Theorem | 2expltfac 17126 | The factorial grows faster than two to the power 𝑁. (Contributed by Mario Carneiro, 15-Sep-2016.) |
⊢ (𝑁 ∈ (ℤ≥‘4) → (2↑𝑁) < (!‘𝑁)) | ||
Theorem | cshwsidrepsw 17127 | If cyclically shifting a word of length being a prime number by a number of positions which is not divisible by the prime number results in the word itself, the word is a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))) | ||
Theorem | cshwsidrepswmod0 17128 | If cyclically shifting a word of length being a prime number results in the word itself, the shift must be either by 0 (modulo the length of the word) or the word must be a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))) | ||
Theorem | cshwshashlem1 17129* | If cyclically shifting a word of length being a prime number not consisting of identical symbols by at least one position (and not by as many positions as the length of the word), the result will not be the word itself. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) ⇒ ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊) | ||
Theorem | cshwshashlem2 17130* | If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) ⇒ ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) | ||
Theorem | cshwshashlem3 17131* | If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) ⇒ ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ≠ 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))) | ||
Theorem | cshwsdisj 17132* | The singletons resulting by cyclically shifting a given word of length being a prime number and not consisting of identical symbols is a disjoint collection. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
⊢ (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) ⇒ ⊢ ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0)) → Disj 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) | ||
Theorem | cshwsiun 17133* | The set of (different!) words resulting by cyclically shifting a given word is an indexed union. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Proof shortened by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ (𝑊 ∈ Word 𝑉 → 𝑀 = ∪ 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)}) | ||
Theorem | cshwsex 17134* | The class of (different!) words resulting by cyclically shifting a given word is a set. (Contributed by AV, 8-Jun-2018.) (Revised by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ (𝑊 ∈ Word 𝑉 → 𝑀 ∈ V) | ||
Theorem | cshws0 17135* | The size of the set of (different!) words resulting by cyclically shifting an empty word is 0. (Contributed by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ (𝑊 = ∅ → (♯‘𝑀) = 0) | ||
Theorem | cshwrepswhash1 17136* | The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018.) (Revised by AV, 8-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (♯‘𝑀) = 1) | ||
Theorem | cshwshashnsame 17137* | If a word (not consisting of identical symbols) has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) ≠ (𝑊‘0) → (♯‘𝑀) = (♯‘𝑊))) | ||
Theorem | cshwshash 17138* | If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((♯‘𝑀) = (♯‘𝑊) ∨ (♯‘𝑀) = 1)) | ||
Theorem | prmlem0 17139* | Lemma for prmlem1 17141 and prmlem2 17153. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ((¬ 2 ∥ 𝑀 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) & ⊢ (𝐾 ∈ ℙ → ¬ 𝐾 ∥ 𝑁) & ⊢ (𝐾 + 2) = 𝑀 ⇒ ⊢ ((¬ 2 ∥ 𝐾 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) | ||
Theorem | prmlem1a 17140* | A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 1 < 𝑁 & ⊢ ¬ 2 ∥ 𝑁 & ⊢ ¬ 3 ∥ 𝑁 & ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | prmlem1 17141 | A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ & ⊢ 1 < 𝑁 & ⊢ ¬ 2 ∥ 𝑁 & ⊢ ¬ 3 ∥ 𝑁 & ⊢ 𝑁 < ;25 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 5prm 17142 | 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ 5 ∈ ℙ | ||
Theorem | 6nprm 17143 | 6 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 6 ∈ ℙ | ||
Theorem | 7prm 17144 | 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ 7 ∈ ℙ | ||
Theorem | 8nprm 17145 | 8 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 8 ∈ ℙ | ||
Theorem | 9nprm 17146 | 9 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 9 ∈ ℙ | ||
Theorem | 10nprm 17147 | 10 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ ¬ ;10 ∈ ℙ | ||
Theorem | 11prm 17148 | 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;11 ∈ ℙ | ||
Theorem | 13prm 17149 | 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;13 ∈ ℙ | ||
Theorem | 17prm 17150 | 17 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;17 ∈ ℙ | ||
Theorem | 19prm 17151 | 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;19 ∈ ℙ | ||
Theorem | 23prm 17152 | 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ ;23 ∈ ℙ | ||
Theorem | prmlem2 17153 |
Our last proving session got as far as 25 because we started with the
two "bootstrap" primes 2 and 3, and the next prime is 5, so
knowing that
2 and 3 are prime and 4 is not allows to cover the numbers less than
5↑2 = 25. Additionally, nonprimes are
"easy", so we can extend
this range of known prime/nonprimes all the way until 29, which is the
first prime larger than 25. Thus, in this lemma we extend another
blanket out to 29↑2 = 841, from which we
can prove even more
primes. If we wanted, we could keep doing this, but the goal is
Bertrand's postulate, and for that we only need a few large primes - we
don't need to find them all, as we have been doing thus far. So after
this blanket runs out, we'll have to switch to another method (see
1259prm 17169).
As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 < ;;841 & ⊢ 1 < 𝑁 & ⊢ ¬ 2 ∥ 𝑁 & ⊢ ¬ 3 ∥ 𝑁 & ⊢ ¬ 5 ∥ 𝑁 & ⊢ ¬ 7 ∥ 𝑁 & ⊢ ¬ ;11 ∥ 𝑁 & ⊢ ¬ ;13 ∥ 𝑁 & ⊢ ¬ ;17 ∥ 𝑁 & ⊢ ¬ ;19 ∥ 𝑁 & ⊢ ¬ ;23 ∥ 𝑁 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 37prm 17154 | 37 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;37 ∈ ℙ | ||
Theorem | 43prm 17155 | 43 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;43 ∈ ℙ | ||
Theorem | 83prm 17156 | 83 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;83 ∈ ℙ | ||
Theorem | 139prm 17157 | 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;139 ∈ ℙ | ||
Theorem | 163prm 17158 | 163 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;163 ∈ ℙ | ||
Theorem | 317prm 17159 | 317 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;317 ∈ ℙ | ||
Theorem | 631prm 17160 | 631 is a prime number. (Contributed by Mario Carneiro, 1-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ ;;631 ∈ ℙ | ||
Theorem | prmo4 17161 | The primorial of 4. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘4) = 6 | ||
Theorem | prmo5 17162 | The primorial of 5. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘5) = ;30 | ||
Theorem | prmo6 17163 | The primorial of 6. (Contributed by AV, 28-Aug-2020.) |
⊢ (#p‘6) = ;30 | ||
Theorem | 1259lem1 17164 | Lemma for 1259prm 17169. Calculate a power mod. In decimal, we calculate 2↑16 = 52𝑁 + 68≡68 and 2↑17≡68 · 2 = 136 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;17) mod 𝑁) = (;;136 mod 𝑁) | ||
Theorem | 1259lem2 17165 | Lemma for 1259prm 17169. Calculate a power mod. In decimal, we calculate 2↑34 = (2↑17)↑2≡136↑2≡14𝑁 + 870. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;34) mod 𝑁) = (;;870 mod 𝑁) | ||
Theorem | 1259lem3 17166 | Lemma for 1259prm 17169. Calculate a power mod. In decimal, we calculate 2↑38 = 2↑34 · 2↑4≡870 · 16 = 11𝑁 + 71 and 2↑76 = (2↑34)↑2≡71↑2 = 4𝑁 + 5≡5. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;76) mod 𝑁) = (5 mod 𝑁) | ||
Theorem | 1259lem4 17167 | Lemma for 1259prm 17169. Calculate a power mod. In decimal, we calculate 2↑306 = (2↑76)↑4 · 4≡5↑4 · 4 = 2𝑁 − 18, 2↑612 = (2↑306)↑2≡18↑2 = 324, 2↑629 = 2↑612 · 2↑17≡324 · 136 = 35𝑁 − 1 and finally 2↑(𝑁 − 1) = (2↑629)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
Theorem | 1259lem5 17168 | Lemma for 1259prm 17169. Calculate the GCD of 2↑34 − 1≡869 with 𝑁 = 1259. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 | ||
Theorem | 1259prm 17169 | 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 = ;;;1259 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 2503lem1 17170 | Lemma for 2503prm 17173. Calculate a power mod. In decimal, we calculate 2↑18 = 512↑2 = 104𝑁 + 1832≡1832. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ ((2↑;18) mod 𝑁) = (;;;1832 mod 𝑁) | ||
Theorem | 2503lem2 17171 | Lemma for 2503prm 17173. Calculate a power mod. We calculate 2↑19 = 2↑18 · 2≡1832 · 2 = 𝑁 + 1161, 2↑38 = (2↑19)↑2≡1161↑2 = 538𝑁 + 1307, 2↑39 = 2↑38 · 2≡1307 · 2 = 𝑁 + 111, 2↑78 = (2↑39)↑2≡111↑2 = 5𝑁 − 194, 2↑156 = (2↑78)↑2≡194↑2 = 15𝑁 + 91, 2↑312 = (2↑156)↑2≡91↑2 = 3𝑁 + 772, 2↑624 = (2↑312)↑2≡772↑2 = 238𝑁 + 270, 2↑1248 = (2↑624)↑2≡270↑2 = 29𝑁 + 313, 2↑1251 = 2↑1248 · 8≡313 · 8 = 𝑁 + 1 and finally 2↑(𝑁 − 1) = (2↑1251)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
Theorem | 2503lem3 17172 | Lemma for 2503prm 17173. Calculate the GCD of 2↑18 − 1≡1831 with 𝑁 = 2503. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ (((2↑;18) − 1) gcd 𝑁) = 1 | ||
Theorem | 2503prm 17173 | 2503 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
⊢ 𝑁 = ;;;2503 ⇒ ⊢ 𝑁 ∈ ℙ | ||
Theorem | 4001lem1 17174 | Lemma for 4001prm 17178. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑;;200) mod 𝑁) = (;;902 mod 𝑁) | ||
Theorem | 4001lem2 17175 | Lemma for 4001prm 17178. Calculate a power mod. In decimal, we calculate 2↑400 = (2↑200)↑2≡902↑2 = 203𝑁 + 1401 and 2↑800 = (2↑400)↑2≡1401↑2 = 490𝑁 + 2311 ≡2311. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑;;800) mod 𝑁) = (;;;2311 mod 𝑁) | ||
Theorem | 4001lem3 17176 | Lemma for 4001prm 17178. Calculate a power mod. In decimal, we calculate 2↑1000 = 2↑800 · 2↑200≡2311 · 902 = 521𝑁 + 1 and finally 2↑(𝑁 − 1) = (2↑1000)↑4≡1↑4 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
Theorem | 4001lem4 17177 | Lemma for 4001prm 17178. Calculate the GCD of 2↑800 − 1≡2310 with 𝑁 = 4001. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ (((2↑;;800) − 1) gcd 𝑁) = 1 | ||
Theorem | 4001prm 17178 | 4001 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ 𝑁 = ;;;4001 ⇒ ⊢ 𝑁 ∈ ℙ | ||
An "extensible structure" (or "structure" in short, at least in this section) is used to define a specific group, ring, poset, and so on. An extensible structure can contain many components. For example, a group will have at least two components (base set and operation), although it can be further specialized by adding other components such as a multiplicative operation for rings (and still remain a group per our definition). Thus, every ring is also a group. This extensible structure approach allows theorems from more general structures (such as groups) to be reused for more specialized structures (such as rings) without having to reprove anything. Structures are common in mathematics, but in informal (natural language) proofs the details are assumed in ways that we must make explicit. An extensible structure is implemented as a function (a set of ordered pairs) on a finite (and not necessarily sequential) subset of ℕ. The function's argument is the index of a structure component (such as 1 for the base set of a group), and its value is the component (such as the base set). By convention, we normally avoid direct reference to the hard-coded numeric index and instead use structure component extractors such as ndxid 17230 and strfv 17237. Using extractors makes it easier to change numeric indices and also makes the components' purpose clearer. For example, as noted in ndxid 17230, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using the extensible structure {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. See section header comment mmtheorems.html#cnx 17230 for more details on numeric indices versus the structure component extractors. There are many other possible ways to handle structures. We chose this extensible structure approach because this approach (1) results in simpler notation than other approaches we are aware of, and (2) is easier to do proofs with. We cannot use an approach that uses "hidden" arguments; Metamath does not support hidden arguments, and in any case we want nothing hidden. It would be possible to use a categorical approach (e.g., something vaguely similar to Lean's mathlib). However, instances (the chain of proofs that an 𝑋 is a 𝑌 via a bunch of forgetful functors) can cause serious performance problems for automated tooling, and the resulting proofs would be painful to look at directly (in the case of Lean, they are long past the level where people would find it acceptable to look at them directly). Metamath is working under much stricter conditions than this, and it has still managed to achieve about the same level of flexibility through this "extensible structure" approach. To create a substructure of a given extensible structure, you can simply use the multifunction restriction operator for extensible structures ↾s as defined in df-ress 17274. This can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone. Individual kinds of structures will need to handle this behavior by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp). For example, the unital ring of integers ℤring is defined in df-zring 21475 as simply ℤring = (ℂfld ↾s ℤ). This can be similarly done for all other subsets of ℂ, which has all the structure we can show applies to it, and this all comes "for free". Should we come up with some new structure in the future that we wish ℂ to inherit, then we change the definition of ℂfld, reprove all the slot extraction theorems, add a new one, and that's it. None of the other downstream theorems have to change. Note that the construct of df-prds 17493 addresses a different situation. It is not possible to have SubGrp and SubRing be the same thing because they produce different outputs on the same input. The subgroups of an extensible structure treated as a group are not the same as the subrings of that same structure. With df-prds 17493 it can actually reasonably perform the task, that is, being the product group given a family of groups, while also being the product ring given a family of rings. There is no contradiction here because the group part of a product ring is a product group. There is also a general theory of "substructure algebras", in the form of df-mre 17630 and df-acs 17633. SubGrp is a Moore collection, as is SubRing, SubRng and many other substructure collections. But it is not useful for picking out a particular collection of interest; SubRing and SubGrp still need to be defined and they are distinct --- nothing is going to select these definitions for us. Extensible structures only work well when they represent concrete categories, where there is a "base set", morphisms are functions, and subobjects are subsets with induced operations. In short, they primarily work well for "sets with (some) extra structure". Extensible structures may not suffice for more complicated situations. For example, in manifolds, ↾s would not work. That said, extensible structures are sufficient for many of the structures that set.mm currently considers, and offer a good compromise for a goal-oriented formalization. | ||
Syntax | cstr 17179 | Extend class notation with the class of structures with components numbered below 𝐴. |
class Struct | ||
Definition | df-struct 17180* |
Define a structure with components in 𝑀...𝑁. This is not a
requirement for groups, posets, etc., but it is a useful assumption for
component extraction theorems.
As mentioned in the section header, an "extensible structure should be implemented as a function (a set of ordered pairs)". The current definition, however, is less restrictive: it allows for classes which contain the empty set ∅ to be extensible structures. Because of 0nelfun 6585, such classes cannot be functions. Without the empty set, however, a structure must be a function, see structn0fun 17184: 𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}). Allowing an extensible structure to contain the empty set ensures that expressions like {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} are structures without asserting or implying that 𝐴, 𝐵, 𝐶 and 𝐷 are sets (if 𝐴 or 𝐵 is a proper class, then 〈𝐴, 𝐵〉 = ∅, see opprc 4900). This is used critically in strle1 17191, strle2 17192, strle3 17193 and strleun 17190 to avoid sethood hypotheses on the "payload" sets: without this, ipsstr 17381 and theorems like it will have many sethood assumptions, and may not even be usable in the empty context. Instead, the sethood assumption is deferred until it is actually needed, e.g., ipsbase 17382, which requires that the base set be a set but not any of the other components. Usually, a concrete structure like ℂfld does not contain the empty set, and therefore is a function, see cnfldfun 21395. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | ||
Theorem | brstruct 17181 | The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ Rel Struct | ||
Theorem | isstruct2 17182 | The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) | ||
Theorem | structex 17183 | A structure is a set. (Contributed by AV, 10-Nov-2021.) |
⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | ||
Theorem | structn0fun 17184 | A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | ||
Theorem | isstruct 17185 | The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ (𝐹 Struct 〈𝑀, 𝑁〉 ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) | ||
Theorem | structcnvcnv 17186 | Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) | ||
Theorem | structfung 17187 | The converse of the converse of a structure is a function. Closed form of structfun 17188. (Contributed by AV, 12-Nov-2021.) |
⊢ (𝐹 Struct 𝑋 → Fun ◡◡𝐹) | ||
Theorem | structfun 17188 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof shortened by AV, 12-Nov-2021.) |
⊢ 𝐹 Struct 𝑋 ⇒ ⊢ Fun ◡◡𝐹 | ||
Theorem | structfn 17189 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐹 Struct 〈𝑀, 𝑁〉 ⇒ ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) | ||
Theorem | strleun 17190 | Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐹 Struct 〈𝐴, 𝐵〉 & ⊢ 𝐺 Struct 〈𝐶, 𝐷〉 & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 | ||
Theorem | strle1 17191 | Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 | ||
Theorem | strle2 17192 | Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 & ⊢ 𝐼 < 𝐽 & ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉 | ||
Theorem | strle3 17193 | Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 & ⊢ 𝐼 < 𝐽 & ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 & ⊢ 𝐽 < 𝐾 & ⊢ 𝐾 ∈ ℕ & ⊢ 𝐶 = 𝐾 ⇒ ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} Struct 〈𝐼, 𝐾〉 | ||
Theorem | sbcie2s 17194* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) (Revised by SN, 2-Mar-2025.) |
⊢ 𝐴 = (𝐸‘𝑊) & ⊢ 𝐵 = (𝐹‘𝑊) & ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜑 ↔ 𝜓)) | ||
Theorem | sbcie3s 17195* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
⊢ 𝐴 = (𝐸‘𝑊) & ⊢ 𝐵 = (𝐹‘𝑊) & ⊢ 𝐶 = (𝐺‘𝑊) & ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏][(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) | ||
Syntax | csts 17196 | Set components of a structure. |
class sSet | ||
Definition | df-sets 17197* | Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 17274 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 20152, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) | ||
Theorem | reldmsets 17198 | The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ Rel dom sSet | ||
Theorem | setsvalg 17199 | Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) | ||
Theorem | setsval 17200 | Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |