| Metamath
Proof Explorer Theorem List (p. 172 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 1259lem1 17101 | Lemma for 1259prm 17106. Calculate a power mod. In decimal, we calculate 2↑16 = 52𝑁 + 68≡68 and 2↑17≡68 · 2 = 136 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;17) mod 𝑁) = (;;136 mod 𝑁) | ||
| Theorem | 1259lem2 17102 | Lemma for 1259prm 17106. Calculate a power mod. In decimal, we calculate 2↑34 = (2↑17)↑2≡136↑2≡14𝑁 + 870. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
| ⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;34) mod 𝑁) = (;;870 mod 𝑁) | ||
| Theorem | 1259lem3 17103 | Lemma for 1259prm 17106. Calculate a power mod. In decimal, we calculate 2↑38 = 2↑34 · 2↑4≡870 · 16 = 11𝑁 + 71 and 2↑76 = (2↑34)↑2≡71↑2 = 4𝑁 + 5≡5. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑;76) mod 𝑁) = (5 mod 𝑁) | ||
| Theorem | 1259lem4 17104 | Lemma for 1259prm 17106. Calculate a power mod. In decimal, we calculate 2↑306 = (2↑76)↑4 · 4≡5↑4 · 4 = 2𝑁 − 18, 2↑612 = (2↑306)↑2≡18↑2 = 324, 2↑629 = 2↑612 · 2↑17≡324 · 136 = 35𝑁 − 1 and finally 2↑(𝑁 − 1) = (2↑629)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;1259 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
| Theorem | 1259lem5 17105 | Lemma for 1259prm 17106. Calculate the GCD of 2↑34 − 1≡869 with 𝑁 = 1259. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝑁 = ;;;1259 ⇒ ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 | ||
| Theorem | 1259prm 17106 | 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝑁 = ;;;1259 ⇒ ⊢ 𝑁 ∈ ℙ | ||
| Theorem | 2503lem1 17107 | Lemma for 2503prm 17110. Calculate a power mod. In decimal, we calculate 2↑18 = 512↑2 = 104𝑁 + 1832≡1832. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;2503 ⇒ ⊢ ((2↑;18) mod 𝑁) = (;;;1832 mod 𝑁) | ||
| Theorem | 2503lem2 17108 | Lemma for 2503prm 17110. Calculate a power mod. We calculate 2↑19 = 2↑18 · 2≡1832 · 2 = 𝑁 + 1161, 2↑38 = (2↑19)↑2≡1161↑2 = 538𝑁 + 1307, 2↑39 = 2↑38 · 2≡1307 · 2 = 𝑁 + 111, 2↑78 = (2↑39)↑2≡111↑2 = 5𝑁 − 194, 2↑156 = (2↑78)↑2≡194↑2 = 15𝑁 + 91, 2↑312 = (2↑156)↑2≡91↑2 = 3𝑁 + 772, 2↑624 = (2↑312)↑2≡772↑2 = 238𝑁 + 270, 2↑1248 = (2↑624)↑2≡270↑2 = 29𝑁 + 313, 2↑1251 = 2↑1248 · 8≡313 · 8 = 𝑁 + 1 and finally 2↑(𝑁 − 1) = (2↑1251)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;2503 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
| Theorem | 2503lem3 17109 | Lemma for 2503prm 17110. Calculate the GCD of 2↑18 − 1≡1831 with 𝑁 = 2503. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
| ⊢ 𝑁 = ;;;2503 ⇒ ⊢ (((2↑;18) − 1) gcd 𝑁) = 1 | ||
| Theorem | 2503prm 17110 | 2503 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
| ⊢ 𝑁 = ;;;2503 ⇒ ⊢ 𝑁 ∈ ℙ | ||
| Theorem | 4001lem1 17111 | Lemma for 4001prm 17115. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑;;200) mod 𝑁) = (;;902 mod 𝑁) | ||
| Theorem | 4001lem2 17112 | Lemma for 4001prm 17115. Calculate a power mod. In decimal, we calculate 2↑400 = (2↑200)↑2≡902↑2 = 203𝑁 + 1401 and 2↑800 = (2↑400)↑2≡1401↑2 = 490𝑁 + 2311 ≡2311. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑;;800) mod 𝑁) = (;;;2311 mod 𝑁) | ||
| Theorem | 4001lem3 17113 | Lemma for 4001prm 17115. Calculate a power mod. In decimal, we calculate 2↑1000 = 2↑800 · 2↑200≡2311 · 902 = 521𝑁 + 1 and finally 2↑(𝑁 − 1) = (2↑1000)↑4≡1↑4 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;4001 ⇒ ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) | ||
| Theorem | 4001lem4 17114 | Lemma for 4001prm 17115. Calculate the GCD of 2↑800 − 1≡2310 with 𝑁 = 4001. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;4001 ⇒ ⊢ (((2↑;;800) − 1) gcd 𝑁) = 1 | ||
| Theorem | 4001prm 17115 | 4001 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ 𝑁 = ;;;4001 ⇒ ⊢ 𝑁 ∈ ℙ | ||
An "extensible structure" (or "structure" in short, at least in this section) is used to define a specific group, ring, poset, and so on. An extensible structure can contain many components. For example, a group will have at least two components (base set and operation), although it can be further specialized by adding other components such as a multiplicative operation for rings (and still remain a group per our definition). Thus, every ring is also a group. This extensible structure approach allows theorems from more general structures (such as groups) to be reused for more specialized structures (such as rings) without having to reprove anything. Structures are common in mathematics, but in informal (natural language) proofs the details are assumed in ways that we must make explicit. An extensible structure is implemented as a function (a set of ordered pairs) on a finite (and not necessarily sequential) subset of ℕ. The function's argument is the index of a structure component (such as 1 for the base set of a group), and its value is the component (such as the base set). By convention, we normally avoid direct reference to the hard-coded numeric index and instead use structure component extractors such as ndxid 17167 and strfv 17173. Using extractors makes it easier to change numeric indices and also makes the components' purpose clearer. For example, as noted in ndxid 17167, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using the extensible structure {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. See section header comment mmtheorems.html#cnx 17167 for more details on numeric indices versus the structure component extractors. There are many other possible ways to handle structures. We chose this extensible structure approach because this approach (1) results in simpler notation than other approaches we are aware of, and (2) is easier to do proofs with. We cannot use an approach that uses "hidden" arguments; Metamath does not support hidden arguments, and in any case we want nothing hidden. It would be possible to use a categorical approach (e.g., something vaguely similar to Lean's mathlib). However, instances (the chain of proofs that an 𝑋 is a 𝑌 via a bunch of forgetful functors) can cause serious performance problems for automated tooling, and the resulting proofs would be painful to look at directly (in the case of Lean, they are long past the level where people would find it acceptable to look at them directly). Metamath is working under much stricter conditions than this, and it has still managed to achieve about the same level of flexibility through this "extensible structure" approach. To create a substructure of a given extensible structure, you can simply use the multifunction restriction operator for extensible structures ↾s as defined in df-ress 17201. This can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone. Individual kinds of structures will need to handle this behavior by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp). For example, the unital ring of integers ℤring is defined in df-zring 21357 as simply ℤring = (ℂfld ↾s ℤ). This can be similarly done for all other subsets of ℂ, which has all the structure we can show applies to it, and this all comes "for free". Should we come up with some new structure in the future that we wish ℂ to inherit, then we change the definition of ℂfld, reprove all the slot extraction theorems, add a new one, and that's it. None of the other downstream theorems have to change. Note that the construct of df-prds 17410 addresses a different situation. It is not possible to have SubGrp and SubRing be the same thing because they produce different outputs on the same input. The subgroups of an extensible structure treated as a group are not the same as the subrings of that same structure. With df-prds 17410 it can actually reasonably perform the task, that is, being the product group given a family of groups, while also being the product ring given a family of rings. There is no contradiction here because the group part of a product ring is a product group. There is also a general theory of "substructure algebras", in the form of df-mre 17547 and df-acs 17550. SubGrp is a Moore collection, as is SubRing, SubRng and many other substructure collections. But it is not useful for picking out a particular collection of interest; SubRing and SubGrp still need to be defined and they are distinct --- nothing is going to select these definitions for us. Extensible structures only work well when they represent concrete categories, where there is a "base set", morphisms are functions, and subobjects are subsets with induced operations. In short, they primarily work well for "sets with (some) extra structure". Extensible structures may not suffice for more complicated situations. For example, in manifolds, ↾s would not work. That said, extensible structures are sufficient for many of the structures that set.mm currently considers, and offer a good compromise for a goal-oriented formalization. | ||
| Syntax | cstr 17116 | Extend class notation with the class of structures with components numbered below 𝐴. |
| class Struct | ||
| Definition | df-struct 17117* |
Define a structure with components in 𝑀...𝑁. This is not a
requirement for groups, posets, etc., but it is a useful assumption for
component extraction theorems.
As mentioned in the section header, an "extensible structure should be implemented as a function (a set of ordered pairs)". The current definition, however, is less restrictive: it allows for classes which contain the empty set ∅ to be extensible structures. Because of 0nelfun 6534, such classes cannot be functions. Without the empty set, however, a structure must be a function, see structn0fun 17121: 𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}). Allowing an extensible structure to contain the empty set ensures that expressions like {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} are structures without asserting or implying that 𝐴, 𝐵, 𝐶 and 𝐷 are sets (if 𝐴 or 𝐵 is a proper class, then 〈𝐴, 𝐵〉 = ∅, see opprc 4860). This is used critically in strle1 17128, strle2 17129, strle3 17130 and strleun 17127 to avoid sethood hypotheses on the "payload" sets: without this, ipsstr 17299 and theorems like it will have many sethood assumptions, and may not even be usable in the empty context. Instead, the sethood assumption is deferred until it is actually needed, e.g., ipsbase 17300, which requires that the base set be a set but not any of the other components. Usually, a concrete structure like ℂfld does not contain the empty set, and therefore is a function, see cnfldfun 21278. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | ||
| Theorem | brstruct 17118 | The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ Rel Struct | ||
| Theorem | isstruct2 17119 | The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) | ||
| Theorem | structex 17120 | A structure is a set. (Contributed by AV, 10-Nov-2021.) |
| ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | ||
| Theorem | structn0fun 17121 | A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
| ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | ||
| Theorem | isstruct 17122 | The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) | ||
| Theorem | structcnvcnv 17123 | Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) | ||
| Theorem | structfung 17124 | The converse of the converse of a structure is a function. Closed form of structfun 17125. (Contributed by AV, 12-Nov-2021.) |
| ⊢ (𝐹 Struct 𝑋 → Fun ◡◡𝐹) | ||
| Theorem | structfun 17125 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ 𝐹 Struct 𝑋 ⇒ ⊢ Fun ◡◡𝐹 | ||
| Theorem | structfn 17126 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐹 Struct 〈𝑀, 𝑁〉 ⇒ ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) | ||
| Theorem | strleun 17127 | Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐹 Struct 〈𝐴, 𝐵〉 & ⊢ 𝐺 Struct 〈𝐶, 𝐷〉 & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 | ||
| Theorem | strle1 17128 | Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 ⇒ ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 | ||
| Theorem | strle2 17129 | Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 & ⊢ 𝐼 < 𝐽 & ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 ⇒ ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉 | ||
| Theorem | strle3 17130 | Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐼 ∈ ℕ & ⊢ 𝐴 = 𝐼 & ⊢ 𝐼 < 𝐽 & ⊢ 𝐽 ∈ ℕ & ⊢ 𝐵 = 𝐽 & ⊢ 𝐽 < 𝐾 & ⊢ 𝐾 ∈ ℕ & ⊢ 𝐶 = 𝐾 ⇒ ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} Struct 〈𝐼, 𝐾〉 | ||
| Theorem | sbcie2s 17131* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) (Revised by SN, 2-Mar-2025.) |
| ⊢ 𝐴 = (𝐸‘𝑊) & ⊢ 𝐵 = (𝐹‘𝑊) & ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜑 ↔ 𝜓)) | ||
| Theorem | sbcie3s 17132* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| ⊢ 𝐴 = (𝐸‘𝑊) & ⊢ 𝐵 = (𝐹‘𝑊) & ⊢ 𝐶 = (𝐺‘𝑊) & ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏][(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) | ||
| Syntax | csts 17133 | Set components of a structure. |
| class sSet | ||
| Definition | df-sets 17134* | Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 17201 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 20050, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) | ||
| Theorem | reldmsets 17135 | The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ Rel dom sSet | ||
| Theorem | setsvalg 17136 | Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) | ||
| Theorem | setsval 17137 | Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | ||
| Theorem | fvsetsid 17138 | The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) | ||
| Theorem | fsets 17139 | The structure replacement function is a function. (Contributed by SO, 12-Jul-2018.) |
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹 sSet 〈𝑋, 𝑌〉):𝐴⟶𝐵) | ||
| Theorem | setsdm 17140 | The domain of a structure with replacement is the domain of the original structure extended by the index of the replacement. (Contributed by AV, 7-Jun-2021.) |
| ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → dom (𝐺 sSet 〈𝐼, 𝐸〉) = (dom 𝐺 ∪ {𝐼})) | ||
| Theorem | setsfun 17141 | A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.) |
| ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun (𝐺 sSet 〈𝐼, 𝐸〉)) | ||
| Theorem | setsfun0 17142 | A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 17141 is useful for proofs based on isstruct2 17119 which requires Fun (𝐹 ∖ {∅}) for 𝐹 to be an extensible structure. (Contributed by AV, 7-Jun-2021.) |
| ⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝐺 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | ||
| Theorem | setsn0fun 17143 | The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | ||
| Theorem | setsstruct2 17144 | An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021.) |
| ⊢ (((𝐺 Struct 𝑋 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ) ∧ 𝑌 = 〈if(𝐼 ≤ (1st ‘𝑋), 𝐼, (1st ‘𝑋)), if(𝐼 ≤ (2nd ‘𝑋), (2nd ‘𝑋), 𝐼)〉) → (𝐺 sSet 〈𝐼, 𝐸〉) Struct 𝑌) | ||
| Theorem | setsexstruct2 17145* | An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021.) |
| ⊢ ((𝐺 Struct 𝑋 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ) → ∃𝑦(𝐺 sSet 〈𝐼, 𝐸〉) Struct 𝑦) | ||
| Theorem | setsstruct 17146 | An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021.) (Revised by AV, 14-Nov-2021.) |
| ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐼 ∈ (ℤ≥‘𝑀) ∧ 𝐺 Struct 〈𝑀, 𝑁〉) → (𝐺 sSet 〈𝐼, 𝐸〉) Struct 〈𝑀, if(𝐼 ≤ 𝑁, 𝑁, 𝐼)〉) | ||
| Theorem | wunsets 17147 | Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) | ||
| Theorem | setsres 17148 | The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝑆 ∈ 𝑉 → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | ||
| Theorem | setsabs 17149 | Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) | ||
| Theorem | setscom 17150 | Different components can be set in any order. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐴, 𝐶〉) sSet 〈𝐵, 𝐷〉) = ((𝑆 sSet 〈𝐵, 𝐷〉) sSet 〈𝐴, 𝐶〉)) | ||
| Syntax | cslot 17151 | Extend class notation with the slot function. |
| class Slot 𝐴 | ||
| Definition | df-slot 17152* |
Define the slot extractor for extensible structures. The class
Slot 𝐴 is a function whose argument can be
any set, although it is
meaningful only if that set is a member of an extensible structure (such
as a partially ordered set (df-poset 18274) or a group (df-grp 18868)).
Note that Slot 𝐴 is implemented as "evaluation at 𝐴". That is, (Slot 𝐴‘𝑆) is defined to be (𝑆‘𝐴), where 𝐴 will typically be an index (which is implemented as a small natural number) of a component of an extensible structure 𝑆. Each extensible structure is a function defined on specific (natural number) "slots", and the function Slot 𝐴 extracts the structure's component as a function value at a particular slot (with index 𝐴). The special "structure" ndx, defined as the identity function restricted to ℕ, can be used to extract the number 𝐴 from a slot, since (Slot 𝐴‘ndx) = 𝐴 (see ndxarg 17166). This is typically used to refer to the number of a slot when defining structures without having to expose the detail of what that number is (for instance, we use the expression (Base‘ndx) in theorems and proofs instead of its hard-coded, numeric value 1), and discourage using the specific definition of slot extractors like Base = Slot 1 (see df-base 17180). Actually, these definitions are used in two basic theorems named *id (theorems of the form 𝐶 = Slot (𝐶‘ndx)) and *ndx (theorems of the form (𝐶‘ndx) = 𝑁) only (see, for example, baseid 17182 and basendx 17188), except additionally in the discouraged theorem baseval 17181 to demonstrate the representations of the value of the base set extractor. The *id theorems are implementation independent equivalents of the definitions by the means of ndxid 17167, but the *ndx theorems still depend on the hard-coded values of the indices. Therefore, the usage of these *ndx theorems is also discouraged (for more details see the section header comment mmtheorems.html#cnx 17167). Example: The group operation is the second component, i.e., the component in the second slot, of a group-like structure 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}. The slot extractor +g = Slot 2 (see df-plusg 17233) applied on the structure 𝐺 provides the group operation + = (+g‘𝐺). Expanding the definitions, we get + = (Slot 2‘𝐺) = (𝐺‘2) = (𝐺‘(+g‘ndx)) (for the last equation, see plusgndx 17246). The class Slot cannot be defined as (𝑥 ∈ V ↦ (𝑓 ∈ V ↦ (𝑓‘𝑥))) because each Slot 𝐴 is a function on the proper class V so is itself a proper class, and the values of functions are sets (fvex 6871). It is necessary to allow proper classes as values of Slot 𝐴 since for instance the class of all (base sets of) groups is proper. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥‘𝐴)) | ||
| Theorem | sloteq 17153 | Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.) |
| ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) | ||
| Theorem | slotfn 17154 | A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ 𝐸 Fn V | ||
| Theorem | strfvnd 17155 | Deduction version of strfvn 17156. (Contributed by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) | ||
| Theorem | strfvn 17156 |
Value of a structure component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 17180) and 𝑁 is the
index of the component. 𝑆 is a structure, i.e. a specific
member of
a class of structures such as Poset (df-poset 18274) where
𝑆
∈ Poset.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. Alternatively, use strfv 17173 instead of strfvn 17156. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ V & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) | ||
| Theorem | strfvss 17157 | A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 | ||
| Theorem | wunstr 17158 | Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) | ||
| Theorem | str0 17159 | All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐹 = Slot 𝐼 ⇒ ⊢ ∅ = (𝐹‘∅) | ||
| Theorem | strfvi 17160 | Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑋 = (𝐸‘𝑆) ⇒ ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) | ||
| Theorem | fveqprc 17161 | Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 21426. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (𝐸‘∅) = ∅ & ⊢ 𝑌 = (𝐹‘𝑋) ⇒ ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) | ||
| Theorem | oveqprc 17162 | Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 33305. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (𝐸‘∅) = ∅ & ⊢ 𝑍 = (𝑋𝑂𝑌) & ⊢ Rel dom 𝑂 ⇒ ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) | ||
The structure component index extractor ndx, defined in this subsection, is used to get the numeric argument from a defined structure component extractor such as df-base 17180 (see ndxarg 17166). For each defined structure component extractor, there should be a corresponding specific theorem providing its index, like basendx 17188. The usage of these theorems, however, is discouraged since the particular value for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) instead of the hard-coded index value, and use theorems such as baseid 17182 and basendxnplusgndx 17250. The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint (for example in proofs such as cznabel 48248, based on setsnid 17178) or even ordered (in proofs such as lmodstr 17288). The requirement that the indices are distinct is necessary for sets of ordered pairs to be extensible structures, whereas the ordering allows for proofs avoiding the usage of quadradically many inequalities (compare cnfldfun 21278 with cnfldfunALT 21279). As for the inequalities, it is recommended to provide them explicitly as theorems like basendxnplusgndx 17250, whenever they are required. Since these theorems use discouraged slot theorems, they should be placed near the definition of a slot (within the same subsection), so that the range of usages of discouraged theorems is tightly limited. Although there could be quadradically many of them in the total number of indices, much less are actually available (and not much more are expected). As for the ordering, there are some theorems like basendxltplusgndx 17249 providing the less-than relationship between two indices. These theorems are also proved by discouraged theorems, so they should be placed near the definition of a slot (within the same subsection), too. However, since such theorems are rarely used (in structure building theorems *str like rngstr 17261), it is not recommended to provide explicit theorems for all of them, but to use the (discouraged) *ndx theorems as in lmodstr 17288. Therefore, *str theorems generally depend on the hard-coded values of the indices. | ||
| Syntax | cnx 17163 | Extend class notation with the structure component index extractor. |
| class ndx | ||
| Definition | df-ndx 17164 | Define the structure component index extractor. See Theorem ndxarg 17166 to understand its purpose. The restriction to ℕ ensures that ndx is a set. The restriction to some set is necessary since I is a proper class. In principle, we could have chosen ℂ or (if we revise all structure component definitions such as df-base 17180) another set such as the set of finite ordinals ω (df-om 7843). (Contributed by NM, 4-Sep-2011.) |
| ⊢ ndx = ( I ↾ ℕ) | ||
| Theorem | wunndx 17165 | Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → ndx ∈ 𝑈) | ||
| Theorem | ndxarg 17166 | Get the numeric argument from a defined structure component extractor such as df-base 17180. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸‘ndx) = 𝑁 | ||
| Theorem | ndxid 17167 |
A structure component extractor is defined by its own index. This
theorem, together with strfv 17173 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 17180 and the ;10 in
df-ple 17240, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐸 = Slot (𝐸‘ndx) | ||
| Theorem | strndxid 17168 | The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) (New usage is discouraged.) Use strfvnd 17155 directly with 𝑁 set to (𝐸‘ndx) if possible. |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) | ||
| Theorem | setsidvald 17169 |
Value of the structure replacement function, deduction version.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) | ||
| Theorem | strfvd 17170 | Deduction version of strfv 17173. (Contributed by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strfv2d 17171 | Deduction version of strfv2 17172. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun ◡◡𝑆) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strfv2 17172 | A variation on strfv 17173 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑆 ∈ V & ⊢ Fun ◡◡𝑆 & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strfv 17173 | Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18274) with a component extractor 𝐸 (such as the base set extractor df-base 17180). By virtue of ndxid 17167, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑆 Struct 𝑋 & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strfv3 17174 | Variant on strfv 17173 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 = 𝑆) & ⊢ 𝑆 Struct 𝑋 & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ 𝐴 = (𝐸‘𝑈) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
| Theorem | strssd 17175 | Deduction version of strss 17176. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑇) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) | ||
| Theorem | strss 17176 | Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.) |
| ⊢ 𝑇 ∈ V & ⊢ Fun 𝑇 & ⊢ 𝑆 ⊆ 𝑇 & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) | ||
| Theorem | setsid 17177 | Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) ⇒ ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 = (𝐸‘(𝑊 sSet 〈(𝐸‘ndx), 𝐶〉))) | ||
| Theorem | setsnid 17178 | Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ 𝐷 ⇒ ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) | ||
| Syntax | cbs 17179 | Extend class notation with the class of all base set extractors. |
| class Base | ||
| Definition | df-base 17180 | Define the base set (also called underlying set, ground set, carrier set, or carrier) extractor for extensible structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form baseid 17182 instead. (New usage is discouraged.) |
| ⊢ Base = Slot 1 | ||
| Theorem | baseval 17181 | Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| ⊢ 𝐾 ∈ V ⇒ ⊢ (Base‘𝐾) = (𝐾‘1) | ||
| Theorem | baseid 17182 | Utility theorem: index-independent form of df-base 17180. (Contributed by NM, 20-Oct-2012.) |
| ⊢ Base = Slot (Base‘ndx) | ||
| Theorem | basfn 17183 | The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| ⊢ Base Fn V | ||
| Theorem | base0 17184 | The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ ∅ = (Base‘∅) | ||
| Theorem | elbasfv 17185 | Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ 𝑆 = (𝐹‘𝑍) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑍 ∈ V) | ||
| Theorem | elbasov 17186 | Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ Rel dom 𝑂 & ⊢ 𝑆 = (𝑋𝑂𝑌) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | ||
| Theorem | strov2rcl 17187 | Partial reverse closure for any structure defined as a two-argument function. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 2-Dec-2019.) |
| ⊢ 𝑆 = (𝐼𝐹𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ Rel dom 𝐹 ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) | ||
| Theorem | basendx 17188 | Index value of the base set extractor. (Contributed by Mario Carneiro, 2-Aug-2013.) Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail, see section header comment mmtheorems.html#cnx for more information. (New usage is discouraged.) |
| ⊢ (Base‘ndx) = 1 | ||
| Theorem | basendxnn 17189 | The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.) |
| ⊢ (Base‘ndx) ∈ ℕ | ||
| Theorem | basndxelwund 17190 | The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 17196. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | ||
| Theorem | basprssdmsets 17191 | The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) | ||
| Theorem | opelstrbas 17192 | The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) | ||
| Theorem | 1strstr 17193 | A constructed one-slot structure. (Contributed by AV, 15-Nov-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (Base‘ndx)〉 | ||
| Theorem | 1strbas 17194 | The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 15-Nov-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
| Theorem | 1strwunbndx 17195 | A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | ||
| Theorem | 1strwun 17196 | A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 17-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | ||
| Theorem | 2strstr 17197 | A constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Proof shortened by AV, 17-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), 𝑁〉 | ||
| Theorem | 2strbas 17198 | The base set of a constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
| Theorem | 2strop 17199 | The other slot of a constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ( + ∈ 𝑉 → + = (𝐸‘𝐺)) | ||
| Syntax | cress 17200 | Extend class notation with the extensible structure builder restriction operator. |
| class ↾s | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |