MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmsets Structured version   Visualization version   GIF version

Theorem reldmsets 17102
Description: The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Assertion
Ref Expression
reldmsets Rel dom sSet

Proof of Theorem reldmsets
Dummy variables 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sets 17101 . 2 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
21reldmmpo 7545 1 Rel dom sSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3472  cdif 3944  cun 3945  {csn 4627  dom cdm 5675  cres 5677  Rel wrel 5680   sSet csts 17100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-dm 5685  df-oprab 7415  df-mpo 7416  df-sets 17101
This theorem is referenced by:  setsnid  17146  setsnidOLD  17147  oduval  18245  oduleval  18246  oppgval  19252  oppgplusfval  19253  mgpval  20031  opprval  20226
  Copyright terms: Public domain W3C validator