MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmsets Structured version   Visualization version   GIF version

Theorem reldmsets 17142
Description: The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Assertion
Ref Expression
reldmsets Rel dom sSet

Proof of Theorem reldmsets
Dummy variables 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sets 17141 . 2 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
21reldmmpo 7526 1 Rel dom sSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3450  cdif 3914  cun 3915  {csn 4592  dom cdm 5641  cres 5643  Rel wrel 5646   sSet csts 17140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-dm 5651  df-oprab 7394  df-mpo 7395  df-sets 17141
This theorem is referenced by:  setsnid  17185  oduval  18256  oduleval  18257  oppgval  19286  oppgplusfval  19287  mgpval  20059  opprval  20254
  Copyright terms: Public domain W3C validator