MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmsets Structured version   Visualization version   GIF version

Theorem reldmsets 17184
Description: The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Assertion
Ref Expression
reldmsets Rel dom sSet

Proof of Theorem reldmsets
Dummy variables 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sets 17183 . 2 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
21reldmmpo 7541 1 Rel dom sSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3459  cdif 3923  cun 3924  {csn 4601  dom cdm 5654  cres 5656  Rel wrel 5659   sSet csts 17182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-dm 5664  df-oprab 7409  df-mpo 7410  df-sets 17183
This theorem is referenced by:  setsnid  17227  oduval  18300  oduleval  18301  oppgval  19330  oppgplusfval  19331  mgpval  20103  opprval  20298
  Copyright terms: Public domain W3C validator