| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmsets | Structured version Visualization version GIF version | ||
| Description: The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| reldmsets | ⊢ Rel dom sSet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sets 17141 | . 2 ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) | |
| 2 | 1 | reldmmpo 7526 | 1 ⊢ Rel dom sSet |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 {csn 4592 dom cdm 5641 ↾ cres 5643 Rel wrel 5646 sSet csts 17140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-oprab 7394 df-mpo 7395 df-sets 17141 |
| This theorem is referenced by: setsnid 17185 oduval 18256 oduleval 18257 oppgval 19286 oppgplusfval 19287 mgpval 20059 opprval 20254 |
| Copyright terms: Public domain | W3C validator |