Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version |
Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 16956 for the altered base set, and resseqnbas 16960 (subrg0 20040, ressplusg 17009, subrg1 20043, ressmulr 17026) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cress 16950 | . 2 class ↾s | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vx | . . 3 setvar 𝑥 | |
4 | cvv 3433 | . . 3 class V | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑤 |
6 | cbs 16921 | . . . . . 6 class Base | |
7 | 5, 6 | cfv 6437 | . . . . 5 class (Base‘𝑤) |
8 | 3 | cv 1538 | . . . . 5 class 𝑥 |
9 | 7, 8 | wss 3888 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
10 | cnx 16903 | . . . . . . 7 class ndx | |
11 | 10, 6 | cfv 6437 | . . . . . 6 class (Base‘ndx) |
12 | 8, 7 | cin 3887 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
13 | 11, 12 | cop 4568 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
14 | csts 16873 | . . . . 5 class sSet | |
15 | 5, 13, 14 | co 7284 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
16 | 9, 5, 15 | cif 4460 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
17 | 2, 3, 4, 4, 16 | cmpo 7286 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
18 | 1, 17 | wceq 1539 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Colors of variables: wff setvar class |
This definition is referenced by: reldmress 16952 ressval 16953 |
Copyright terms: Public domain | W3C validator |