MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ress Structured version   Visualization version   GIF version

Definition df-ress 17208
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp).

(Credit for this operator goes to Mario Carneiro.)

See ressbas 17213 for the altered base set, and resseqnbas 17219 (subrg0 20495, ressplusg 17261, subrg1 20498, ressmulr 17277) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.)

Assertion
Ref Expression
df-ress s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
Distinct variable group:   𝑥,𝑤

Detailed syntax breakdown of Definition df-ress
StepHypRef Expression
1 cress 17207 . 2 class s
2 vw . . 3 setvar 𝑤
3 vx . . 3 setvar 𝑥
4 cvv 3450 . . 3 class V
52cv 1539 . . . . . 6 class 𝑤
6 cbs 17186 . . . . . 6 class Base
75, 6cfv 6514 . . . . 5 class (Base‘𝑤)
83cv 1539 . . . . 5 class 𝑥
97, 8wss 3917 . . . 4 wff (Base‘𝑤) ⊆ 𝑥
10 cnx 17170 . . . . . . 7 class ndx
1110, 6cfv 6514 . . . . . 6 class (Base‘ndx)
128, 7cin 3916 . . . . . 6 class (𝑥 ∩ (Base‘𝑤))
1311, 12cop 4598 . . . . 5 class ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩
14 csts 17140 . . . . 5 class sSet
155, 13, 14co 7390 . . . 4 class (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)
169, 5, 15cif 4491 . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
172, 3, 4, 4, 16cmpo 7392 . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
181, 17wceq 1540 1 wff s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
Colors of variables: wff setvar class
This definition is referenced by:  reldmress  17209  ressval  17210
  Copyright terms: Public domain W3C validator