MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ress Structured version   Visualization version   GIF version

Definition df-ress 17288
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp).

(Credit for this operator goes to Mario Carneiro.)

See ressbas 17293 for the altered base set, and resseqnbas 17300 (subrg0 20607, ressplusg 17349, subrg1 20610, ressmulr 17366) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.)

Assertion
Ref Expression
df-ress s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
Distinct variable group:   𝑥,𝑤

Detailed syntax breakdown of Definition df-ress
StepHypRef Expression
1 cress 17287 . 2 class s
2 vw . . 3 setvar 𝑤
3 vx . . 3 setvar 𝑥
4 cvv 3488 . . 3 class V
52cv 1536 . . . . . 6 class 𝑤
6 cbs 17258 . . . . . 6 class Base
75, 6cfv 6573 . . . . 5 class (Base‘𝑤)
83cv 1536 . . . . 5 class 𝑥
97, 8wss 3976 . . . 4 wff (Base‘𝑤) ⊆ 𝑥
10 cnx 17240 . . . . . . 7 class ndx
1110, 6cfv 6573 . . . . . 6 class (Base‘ndx)
128, 7cin 3975 . . . . . 6 class (𝑥 ∩ (Base‘𝑤))
1311, 12cop 4654 . . . . 5 class ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩
14 csts 17210 . . . . 5 class sSet
155, 13, 14co 7448 . . . 4 class (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)
169, 5, 15cif 4548 . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
172, 3, 4, 4, 16cmpo 7450 . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
181, 17wceq 1537 1 wff s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
Colors of variables: wff setvar class
This definition is referenced by:  reldmress  17289  ressval  17290
  Copyright terms: Public domain W3C validator