| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version | ||
| Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17213 for the altered base set, and resseqnbas 17219 (subrg0 20495, ressplusg 17261, subrg1 20498, ressmulr 17277) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cress 17207 | . 2 class ↾s | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | vx | . . 3 setvar 𝑥 | |
| 4 | cvv 3450 | . . 3 class V | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑤 |
| 6 | cbs 17186 | . . . . . 6 class Base | |
| 7 | 5, 6 | cfv 6514 | . . . . 5 class (Base‘𝑤) |
| 8 | 3 | cv 1539 | . . . . 5 class 𝑥 |
| 9 | 7, 8 | wss 3917 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
| 10 | cnx 17170 | . . . . . . 7 class ndx | |
| 11 | 10, 6 | cfv 6514 | . . . . . 6 class (Base‘ndx) |
| 12 | 8, 7 | cin 3916 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
| 13 | 11, 12 | cop 4598 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
| 14 | csts 17140 | . . . . 5 class sSet | |
| 15 | 5, 13, 14 | co 7390 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
| 16 | 9, 5, 15 | cif 4491 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
| 17 | 2, 3, 4, 4, 16 | cmpo 7392 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| 18 | 1, 17 | wceq 1540 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldmress 17209 ressval 17210 |
| Copyright terms: Public domain | W3C validator |