Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version |
Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 16873 for the altered base set, and resseqnbas 16877 (subrg0 19946, ressplusg 16926, subrg1 19949, ressmulr 16943) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cress 16867 | . 2 class ↾s | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vx | . . 3 setvar 𝑥 | |
4 | cvv 3422 | . . 3 class V | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑤 |
6 | cbs 16840 | . . . . . 6 class Base | |
7 | 5, 6 | cfv 6418 | . . . . 5 class (Base‘𝑤) |
8 | 3 | cv 1538 | . . . . 5 class 𝑥 |
9 | 7, 8 | wss 3883 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
10 | cnx 16822 | . . . . . . 7 class ndx | |
11 | 10, 6 | cfv 6418 | . . . . . 6 class (Base‘ndx) |
12 | 8, 7 | cin 3882 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
13 | 11, 12 | cop 4564 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
14 | csts 16792 | . . . . 5 class sSet | |
15 | 5, 13, 14 | co 7255 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
16 | 9, 5, 15 | cif 4456 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
17 | 2, 3, 4, 4, 16 | cmpo 7257 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
18 | 1, 17 | wceq 1539 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Colors of variables: wff setvar class |
This definition is referenced by: reldmress 16869 ressval 16870 |
Copyright terms: Public domain | W3C validator |