| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version | ||
| Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17206 for the altered base set, and resseqnbas 17212 (subrg0 20488, ressplusg 17254, subrg1 20491, ressmulr 17270) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cress 17200 | . 2 class ↾s | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | vx | . . 3 setvar 𝑥 | |
| 4 | cvv 3447 | . . 3 class V | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑤 |
| 6 | cbs 17179 | . . . . . 6 class Base | |
| 7 | 5, 6 | cfv 6511 | . . . . 5 class (Base‘𝑤) |
| 8 | 3 | cv 1539 | . . . . 5 class 𝑥 |
| 9 | 7, 8 | wss 3914 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
| 10 | cnx 17163 | . . . . . . 7 class ndx | |
| 11 | 10, 6 | cfv 6511 | . . . . . 6 class (Base‘ndx) |
| 12 | 8, 7 | cin 3913 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
| 13 | 11, 12 | cop 4595 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
| 14 | csts 17133 | . . . . 5 class sSet | |
| 15 | 5, 13, 14 | co 7387 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
| 16 | 9, 5, 15 | cif 4488 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
| 17 | 2, 3, 4, 4, 16 | cmpo 7389 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| 18 | 1, 17 | wceq 1540 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldmress 17202 ressval 17203 |
| Copyright terms: Public domain | W3C validator |