![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version |
Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17185 for the altered base set, and resseqnbas 17192 (subrg0 20478, ressplusg 17241, subrg1 20481, ressmulr 17258) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cress 17179 | . 2 class ↾s | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vx | . . 3 setvar 𝑥 | |
4 | cvv 3468 | . . 3 class V | |
5 | 2 | cv 1532 | . . . . . 6 class 𝑤 |
6 | cbs 17150 | . . . . . 6 class Base | |
7 | 5, 6 | cfv 6536 | . . . . 5 class (Base‘𝑤) |
8 | 3 | cv 1532 | . . . . 5 class 𝑥 |
9 | 7, 8 | wss 3943 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
10 | cnx 17132 | . . . . . . 7 class ndx | |
11 | 10, 6 | cfv 6536 | . . . . . 6 class (Base‘ndx) |
12 | 8, 7 | cin 3942 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
13 | 11, 12 | cop 4629 | . . . . 5 class ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩ |
14 | csts 17102 | . . . . 5 class sSet | |
15 | 5, 13, 14 | co 7404 | . . . 4 class (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩) |
16 | 9, 5, 15 | cif 4523 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)) |
17 | 2, 3, 4, 4, 16 | cmpo 7406 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))) |
18 | 1, 17 | wceq 1533 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))) |
Colors of variables: wff setvar class |
This definition is referenced by: reldmress 17181 ressval 17182 |
Copyright terms: Public domain | W3C validator |