![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version |
Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17293 for the altered base set, and resseqnbas 17300 (subrg0 20607, ressplusg 17349, subrg1 20610, ressmulr 17366) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cress 17287 | . 2 class ↾s | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vx | . . 3 setvar 𝑥 | |
4 | cvv 3488 | . . 3 class V | |
5 | 2 | cv 1536 | . . . . . 6 class 𝑤 |
6 | cbs 17258 | . . . . . 6 class Base | |
7 | 5, 6 | cfv 6573 | . . . . 5 class (Base‘𝑤) |
8 | 3 | cv 1536 | . . . . 5 class 𝑥 |
9 | 7, 8 | wss 3976 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
10 | cnx 17240 | . . . . . . 7 class ndx | |
11 | 10, 6 | cfv 6573 | . . . . . 6 class (Base‘ndx) |
12 | 8, 7 | cin 3975 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
13 | 11, 12 | cop 4654 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
14 | csts 17210 | . . . . 5 class sSet | |
15 | 5, 13, 14 | co 7448 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
16 | 9, 5, 15 | cif 4548 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
17 | 2, 3, 4, 4, 16 | cmpo 7450 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
18 | 1, 17 | wceq 1537 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Colors of variables: wff setvar class |
This definition is referenced by: reldmress 17289 ressval 17290 |
Copyright terms: Public domain | W3C validator |