MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ress Structured version   Visualization version   GIF version

Definition df-ress 16951
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp).

(Credit for this operator goes to Mario Carneiro.)

See ressbas 16956 for the altered base set, and resseqnbas 16960 (subrg0 20040, ressplusg 17009, subrg1 20043, ressmulr 17026) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.)

Assertion
Ref Expression
df-ress s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
Distinct variable group:   𝑥,𝑤

Detailed syntax breakdown of Definition df-ress
StepHypRef Expression
1 cress 16950 . 2 class s
2 vw . . 3 setvar 𝑤
3 vx . . 3 setvar 𝑥
4 cvv 3433 . . 3 class V
52cv 1538 . . . . . 6 class 𝑤
6 cbs 16921 . . . . . 6 class Base
75, 6cfv 6437 . . . . 5 class (Base‘𝑤)
83cv 1538 . . . . 5 class 𝑥
97, 8wss 3888 . . . 4 wff (Base‘𝑤) ⊆ 𝑥
10 cnx 16903 . . . . . . 7 class ndx
1110, 6cfv 6437 . . . . . 6 class (Base‘ndx)
128, 7cin 3887 . . . . . 6 class (𝑥 ∩ (Base‘𝑤))
1311, 12cop 4568 . . . . 5 class ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩
14 csts 16873 . . . . 5 class sSet
155, 13, 14co 7284 . . . 4 class (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)
169, 5, 15cif 4460 . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
172, 3, 4, 4, 16cmpo 7286 . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
181, 17wceq 1539 1 wff s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
Colors of variables: wff setvar class
This definition is referenced by:  reldmress  16952  ressval  16953
  Copyright terms: Public domain W3C validator