| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version | ||
| Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17142 for the altered base set, and resseqnbas 17148 (subrg0 20489, ressplusg 17190, subrg1 20492, ressmulr 17206) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cress 17136 | . 2 class ↾s | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | vx | . . 3 setvar 𝑥 | |
| 4 | cvv 3436 | . . 3 class V | |
| 5 | 2 | cv 1540 | . . . . . 6 class 𝑤 |
| 6 | cbs 17115 | . . . . . 6 class Base | |
| 7 | 5, 6 | cfv 6476 | . . . . 5 class (Base‘𝑤) |
| 8 | 3 | cv 1540 | . . . . 5 class 𝑥 |
| 9 | 7, 8 | wss 3897 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
| 10 | cnx 17099 | . . . . . . 7 class ndx | |
| 11 | 10, 6 | cfv 6476 | . . . . . 6 class (Base‘ndx) |
| 12 | 8, 7 | cin 3896 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
| 13 | 11, 12 | cop 4577 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
| 14 | csts 17069 | . . . . 5 class sSet | |
| 15 | 5, 13, 14 | co 7341 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
| 16 | 9, 5, 15 | cif 4470 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
| 17 | 2, 3, 4, 4, 16 | cmpo 7343 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| 18 | 1, 17 | wceq 1541 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldmress 17138 ressval 17139 |
| Copyright terms: Public domain | W3C validator |