| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version | ||
| Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17165 for the altered base set, and resseqnbas 17171 (subrg0 20482, ressplusg 17213, subrg1 20485, ressmulr 17229) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cress 17159 | . 2 class ↾s | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | vx | . . 3 setvar 𝑥 | |
| 4 | cvv 3438 | . . 3 class V | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑤 |
| 6 | cbs 17138 | . . . . . 6 class Base | |
| 7 | 5, 6 | cfv 6486 | . . . . 5 class (Base‘𝑤) |
| 8 | 3 | cv 1539 | . . . . 5 class 𝑥 |
| 9 | 7, 8 | wss 3905 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
| 10 | cnx 17122 | . . . . . . 7 class ndx | |
| 11 | 10, 6 | cfv 6486 | . . . . . 6 class (Base‘ndx) |
| 12 | 8, 7 | cin 3904 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
| 13 | 11, 12 | cop 4585 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
| 14 | csts 17092 | . . . . 5 class sSet | |
| 15 | 5, 13, 14 | co 7353 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
| 16 | 9, 5, 15 | cif 4478 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
| 17 | 2, 3, 4, 4, 16 | cmpo 7355 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| 18 | 1, 17 | wceq 1540 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldmress 17161 ressval 17162 |
| Copyright terms: Public domain | W3C validator |