| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version | ||
| Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17255 for the altered base set, and resseqnbas 17261 (subrg0 20537, ressplusg 17303, subrg1 20540, ressmulr 17319) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cress 17249 | . 2 class ↾s | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | vx | . . 3 setvar 𝑥 | |
| 4 | cvv 3459 | . . 3 class V | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑤 |
| 6 | cbs 17226 | . . . . . 6 class Base | |
| 7 | 5, 6 | cfv 6530 | . . . . 5 class (Base‘𝑤) |
| 8 | 3 | cv 1539 | . . . . 5 class 𝑥 |
| 9 | 7, 8 | wss 3926 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
| 10 | cnx 17210 | . . . . . . 7 class ndx | |
| 11 | 10, 6 | cfv 6530 | . . . . . 6 class (Base‘ndx) |
| 12 | 8, 7 | cin 3925 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
| 13 | 11, 12 | cop 4607 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
| 14 | csts 17180 | . . . . 5 class sSet | |
| 15 | 5, 13, 14 | co 7403 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
| 16 | 9, 5, 15 | cif 4500 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
| 17 | 2, 3, 4, 4, 16 | cmpo 7405 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| 18 | 1, 17 | wceq 1540 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldmress 17251 ressval 17252 |
| Copyright terms: Public domain | W3C validator |