MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ress Structured version   Visualization version   GIF version

Definition df-ress 16868
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp).

(Credit for this operator goes to Mario Carneiro.)

See ressbas 16873 for the altered base set, and resseqnbas 16877 (subrg0 19946, ressplusg 16926, subrg1 19949, ressmulr 16943) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.)

Assertion
Ref Expression
df-ress s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
Distinct variable group:   𝑥,𝑤

Detailed syntax breakdown of Definition df-ress
StepHypRef Expression
1 cress 16867 . 2 class s
2 vw . . 3 setvar 𝑤
3 vx . . 3 setvar 𝑥
4 cvv 3422 . . 3 class V
52cv 1538 . . . . . 6 class 𝑤
6 cbs 16840 . . . . . 6 class Base
75, 6cfv 6418 . . . . 5 class (Base‘𝑤)
83cv 1538 . . . . 5 class 𝑥
97, 8wss 3883 . . . 4 wff (Base‘𝑤) ⊆ 𝑥
10 cnx 16822 . . . . . . 7 class ndx
1110, 6cfv 6418 . . . . . 6 class (Base‘ndx)
128, 7cin 3882 . . . . . 6 class (𝑥 ∩ (Base‘𝑤))
1311, 12cop 4564 . . . . 5 class ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩
14 csts 16792 . . . . 5 class sSet
155, 13, 14co 7255 . . . 4 class (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)
169, 5, 15cif 4456 . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩))
172, 3, 4, 4, 16cmpo 7257 . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
181, 17wceq 1539 1 wff s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
Colors of variables: wff setvar class
This definition is referenced by:  reldmress  16869  ressval  16870
  Copyright terms: Public domain W3C validator