![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsvalg | Structured version Visualization version GIF version |
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setsvalg | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | elex 3492 | . 2 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
3 | resexg 6036 | . . . . 5 ⊢ (𝑆 ∈ V → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V) | |
4 | 3 | adantr 479 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V) |
5 | snex 5437 | . . . 4 ⊢ {𝐴} ∈ V | |
6 | unexg 7757 | . . . 4 ⊢ (((𝑆 ↾ (V ∖ dom {𝐴})) ∈ V ∧ {𝐴} ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) | |
7 | 4, 5, 6 | sylancl 584 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) |
8 | simpl 481 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → 𝑠 = 𝑆) | |
9 | simpr 483 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → 𝑒 = 𝐴) | |
10 | 9 | sneqd 4644 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → {𝑒} = {𝐴}) |
11 | 10 | dmeqd 5912 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → dom {𝑒} = dom {𝐴}) |
12 | 11 | difeq2d 4122 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → (V ∖ dom {𝑒}) = (V ∖ dom {𝐴})) |
13 | 8, 12 | reseq12d 5990 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → (𝑠 ↾ (V ∖ dom {𝑒})) = (𝑆 ↾ (V ∖ dom {𝐴}))) |
14 | 13, 10 | uneq12d 4165 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
15 | df-sets 17140 | . . . 4 ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) | |
16 | 14, 15 | ovmpoga 7581 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V ∧ ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
17 | 7, 16 | mpd3an3 1458 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
18 | 1, 2, 17 | syl2an 594 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∖ cdif 3946 ∪ cun 3947 {csn 4632 dom cdm 5682 ↾ cres 5684 (class class class)co 7426 sSet csts 17139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-sets 17140 |
This theorem is referenced by: setsval 17143 setsdm 17146 setsfun 17147 setsfun0 17148 wunsets 17153 setsres 17154 |
Copyright terms: Public domain | W3C validator |