MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsvalg Structured version   Visualization version   GIF version

Theorem setsvalg 17112
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsvalg ((𝑆𝑉𝐴𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))

Proof of Theorem setsvalg
Dummy variables 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3465 . 2 (𝑆𝑉𝑆 ∈ V)
2 elex 3465 . 2 (𝐴𝑊𝐴 ∈ V)
3 resexg 5987 . . . . 5 (𝑆 ∈ V → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V)
43adantr 480 . . . 4 ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V)
5 snex 5386 . . . 4 {𝐴} ∈ V
6 unexg 7699 . . . 4 (((𝑆 ↾ (V ∖ dom {𝐴})) ∈ V ∧ {𝐴} ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V)
74, 5, 6sylancl 586 . . 3 ((𝑆 ∈ V ∧ 𝐴 ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V)
8 simpl 482 . . . . . 6 ((𝑠 = 𝑆𝑒 = 𝐴) → 𝑠 = 𝑆)
9 simpr 484 . . . . . . . . 9 ((𝑠 = 𝑆𝑒 = 𝐴) → 𝑒 = 𝐴)
109sneqd 4597 . . . . . . . 8 ((𝑠 = 𝑆𝑒 = 𝐴) → {𝑒} = {𝐴})
1110dmeqd 5859 . . . . . . 7 ((𝑠 = 𝑆𝑒 = 𝐴) → dom {𝑒} = dom {𝐴})
1211difeq2d 4085 . . . . . 6 ((𝑠 = 𝑆𝑒 = 𝐴) → (V ∖ dom {𝑒}) = (V ∖ dom {𝐴}))
138, 12reseq12d 5940 . . . . 5 ((𝑠 = 𝑆𝑒 = 𝐴) → (𝑠 ↾ (V ∖ dom {𝑒})) = (𝑆 ↾ (V ∖ dom {𝐴})))
1413, 10uneq12d 4128 . . . 4 ((𝑠 = 𝑆𝑒 = 𝐴) → ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
15 df-sets 17110 . . . 4 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
1614, 15ovmpoga 7523 . . 3 ((𝑆 ∈ V ∧ 𝐴 ∈ V ∧ ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
177, 16mpd3an3 1464 . 2 ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
181, 2, 17syl2an 596 1 ((𝑆𝑉𝐴𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  cun 3909  {csn 4585  dom cdm 5631  cres 5633  (class class class)co 7369   sSet csts 17109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-sets 17110
This theorem is referenced by:  setsval  17113  setsdm  17116  setsfun  17117  setsfun0  17118  wunsets  17123  setsres  17124
  Copyright terms: Public domain W3C validator