![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsvalg | Structured version Visualization version GIF version |
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
setsvalg | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | elex 3499 | . 2 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
3 | resexg 6047 | . . . . 5 ⊢ (𝑆 ∈ V → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ V) |
5 | snex 5442 | . . . 4 ⊢ {𝐴} ∈ V | |
6 | unexg 7762 | . . . 4 ⊢ (((𝑆 ↾ (V ∖ dom {𝐴})) ∈ V ∧ {𝐴} ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) | |
7 | 4, 5, 6 | sylancl 586 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) |
8 | simpl 482 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → 𝑠 = 𝑆) | |
9 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → 𝑒 = 𝐴) | |
10 | 9 | sneqd 4643 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → {𝑒} = {𝐴}) |
11 | 10 | dmeqd 5919 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → dom {𝑒} = dom {𝐴}) |
12 | 11 | difeq2d 4136 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → (V ∖ dom {𝑒}) = (V ∖ dom {𝐴})) |
13 | 8, 12 | reseq12d 6001 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → (𝑠 ↾ (V ∖ dom {𝑒})) = (𝑆 ↾ (V ∖ dom {𝐴}))) |
14 | 13, 10 | uneq12d 4179 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑒 = 𝐴) → ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
15 | df-sets 17198 | . . . 4 ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) | |
16 | 14, 15 | ovmpoga 7587 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V ∧ ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
17 | 7, 16 | mpd3an3 1461 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝐴 ∈ V) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
18 | 1, 2, 17 | syl2an 596 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ∪ cun 3961 {csn 4631 dom cdm 5689 ↾ cres 5691 (class class class)co 7431 sSet csts 17197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-sets 17198 |
This theorem is referenced by: setsval 17201 setsdm 17204 setsfun 17205 setsfun0 17206 wunsets 17211 setsres 17212 |
Copyright terms: Public domain | W3C validator |