| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sgm | Structured version Visualization version GIF version | ||
| Description: Define the sum of positive divisors function (𝑥 σ 𝑛), which is the sum of the xth powers of the positive integer divisors of n, see definition in [ApostolNT] p. 38. For 𝑥 = 0, (𝑥 σ 𝑛) counts the number of divisors of 𝑛, i.e. (0 σ 𝑛) is the divisor function, see remark in [ApostolNT] p. 38. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| df-sgm | ⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csgm 27139 | . 2 class σ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vn | . . 3 setvar 𝑛 | |
| 4 | cc 11153 | . . 3 class ℂ | |
| 5 | cn 12266 | . . 3 class ℕ | |
| 6 | vp | . . . . . . 7 setvar 𝑝 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑝 |
| 8 | 3 | cv 1539 | . . . . . 6 class 𝑛 |
| 9 | cdvds 16290 | . . . . . 6 class ∥ | |
| 10 | 7, 8, 9 | wbr 5143 | . . . . 5 wff 𝑝 ∥ 𝑛 |
| 11 | 10, 6, 5 | crab 3436 | . . . 4 class {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} |
| 12 | vk | . . . . . 6 setvar 𝑘 | |
| 13 | 12 | cv 1539 | . . . . 5 class 𝑘 |
| 14 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 15 | ccxp 26597 | . . . . 5 class ↑𝑐 | |
| 16 | 13, 14, 15 | co 7431 | . . . 4 class (𝑘↑𝑐𝑥) |
| 17 | 11, 16, 12 | csu 15722 | . . 3 class Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥) |
| 18 | 2, 3, 4, 5, 17 | cmpo 7433 | . 2 class (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) |
| 19 | 1, 18 | wceq 1540 | 1 wff σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sgmval 27185 sgmf 27188 |
| Copyright terms: Public domain | W3C validator |