Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgmf | Structured version Visualization version GIF version |
Description: The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
sgmf | ⊢ σ :(ℂ × ℕ)⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13383 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin) | |
2 | dvdsssfz1 15712 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} ⊆ (1...𝑛)) | |
3 | 2 | adantl 486 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} ⊆ (1...𝑛)) |
4 | 1, 3 | ssfid 8763 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} ∈ Fin) |
5 | elrabi 3597 | . . . . . 6 ⊢ (𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} → 𝑘 ∈ ℕ) | |
6 | 5 | nncnd 11683 | . . . . 5 ⊢ (𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} → 𝑘 ∈ ℂ) |
7 | simpl 487 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℂ) | |
8 | cxpcl 25357 | . . . . 5 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘↑𝑐𝑥) ∈ ℂ) | |
9 | 6, 7, 8 | syl2anr 600 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛}) → (𝑘↑𝑐𝑥) ∈ ℂ) |
10 | 4, 9 | fsumcl 15131 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥) ∈ ℂ) |
11 | 10 | rgen2 3133 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑛 ∈ ℕ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥) ∈ ℂ |
12 | df-sgm 25779 | . . 3 ⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) | |
13 | 12 | fmpo 7771 | . 2 ⊢ (∀𝑥 ∈ ℂ ∀𝑛 ∈ ℕ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥) ∈ ℂ ↔ σ :(ℂ × ℕ)⟶ℂ) |
14 | 11, 13 | mpbi 233 | 1 ⊢ σ :(ℂ × ℕ)⟶ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 ∈ wcel 2112 ∀wral 3071 {crab 3075 ⊆ wss 3859 class class class wbr 5033 × cxp 5523 ⟶wf 6332 (class class class)co 7151 ℂcc 10566 1c1 10569 ℕcn 11667 ...cfz 12932 Σcsu 15083 ∥ cdvds 15648 ↑𝑐ccxp 25239 σ csgm 25773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9130 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 ax-addf 10647 ax-mulf 10648 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-oadd 8117 df-er 8300 df-map 8419 df-pm 8420 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8860 df-fi 8901 df-sup 8932 df-inf 8933 df-oi 9000 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-q 12382 df-rp 12424 df-xneg 12541 df-xadd 12542 df-xmul 12543 df-ioo 12776 df-ioc 12777 df-ico 12778 df-icc 12779 df-fz 12933 df-fzo 13076 df-fl 13204 df-mod 13280 df-seq 13412 df-exp 13473 df-fac 13677 df-bc 13706 df-hash 13734 df-shft 14467 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 df-limsup 14869 df-clim 14886 df-rlim 14887 df-sum 15084 df-ef 15462 df-sin 15464 df-cos 15465 df-pi 15467 df-dvds 15649 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-starv 16631 df-sca 16632 df-vsca 16633 df-ip 16634 df-tset 16635 df-ple 16636 df-ds 16638 df-unif 16639 df-hom 16640 df-cco 16641 df-rest 16747 df-topn 16748 df-0g 16766 df-gsum 16767 df-topgen 16768 df-pt 16769 df-prds 16772 df-xrs 16826 df-qtop 16831 df-imas 16832 df-xps 16834 df-mre 16908 df-mrc 16909 df-acs 16911 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-submnd 18016 df-mulg 18285 df-cntz 18507 df-cmn 18968 df-psmet 20151 df-xmet 20152 df-met 20153 df-bl 20154 df-mopn 20155 df-fbas 20156 df-fg 20157 df-cnfld 20160 df-top 21587 df-topon 21604 df-topsp 21626 df-bases 21639 df-cld 21712 df-ntr 21713 df-cls 21714 df-nei 21791 df-lp 21829 df-perf 21830 df-cn 21920 df-cnp 21921 df-haus 22008 df-tx 22255 df-hmeo 22448 df-fil 22539 df-fm 22631 df-flim 22632 df-flf 22633 df-xms 23015 df-ms 23016 df-tms 23017 df-cncf 23572 df-limc 24558 df-dv 24559 df-log 25240 df-cxp 25241 df-sgm 25779 |
This theorem is referenced by: sgmcl 25823 |
Copyright terms: Public domain | W3C validator |