MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efnnfsumcl Structured version   Visualization version   GIF version

Theorem efnnfsumcl 25382
Description: Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.)
Hypotheses
Ref Expression
efnnfsumcl.1 (𝜑𝐴 ∈ Fin)
efnnfsumcl.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
efnnfsumcl.3 ((𝜑𝑘𝐴) → (exp‘𝐵) ∈ ℕ)
Assertion
Ref Expression
efnnfsumcl (𝜑 → (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem efnnfsumcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3947 . . . . 5 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℝ
2 ax-resscn 10392 . . . . 5 ℝ ⊆ ℂ
31, 2sstri 3868 . . . 4 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ
43a1i 11 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ)
5 fveq2 6499 . . . . . . 7 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
65eleq1d 2851 . . . . . 6 (𝑥 = 𝑦 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑦) ∈ ℕ))
76elrab 3596 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ))
8 fveq2 6499 . . . . . . 7 (𝑥 = 𝑧 → (exp‘𝑥) = (exp‘𝑧))
98eleq1d 2851 . . . . . 6 (𝑥 = 𝑧 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑧) ∈ ℕ))
109elrab 3596 . . . . 5 (𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ))
11 fveq2 6499 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → (exp‘𝑥) = (exp‘(𝑦 + 𝑧)))
1211eleq1d 2851 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(𝑦 + 𝑧)) ∈ ℕ))
13 simpll 754 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℝ)
14 simprl 758 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℝ)
1513, 14readdcld 10469 . . . . . 6 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ ℝ)
1613recnd 10468 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℂ)
1714recnd 10468 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℂ)
18 efadd 15307 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
1916, 17, 18syl2anc 576 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
20 nnmulcl 11464 . . . . . . . 8 (((exp‘𝑦) ∈ ℕ ∧ (exp‘𝑧) ∈ ℕ) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
2120ad2ant2l 733 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
2219, 21eqeltrd 2867 . . . . . 6 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) ∈ ℕ)
2312, 15, 22elrabd 3599 . . . . 5 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
247, 10, 23syl2anb 588 . . . 4 ((𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
2524adantl 474 . . 3 ((𝜑 ∧ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
26 efnnfsumcl.1 . . 3 (𝜑𝐴 ∈ Fin)
27 fveq2 6499 . . . . 5 (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵))
2827eleq1d 2851 . . . 4 (𝑥 = 𝐵 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝐵) ∈ ℕ))
29 efnnfsumcl.2 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
30 efnnfsumcl.3 . . . 4 ((𝜑𝑘𝐴) → (exp‘𝐵) ∈ ℕ)
3128, 29, 30elrabd 3599 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
32 0re 10441 . . . . 5 0 ∈ ℝ
33 1nn 11452 . . . . 5 1 ∈ ℕ
34 fveq2 6499 . . . . . . . 8 (𝑥 = 0 → (exp‘𝑥) = (exp‘0))
35 ef0 15304 . . . . . . . 8 (exp‘0) = 1
3634, 35syl6eq 2831 . . . . . . 7 (𝑥 = 0 → (exp‘𝑥) = 1)
3736eleq1d 2851 . . . . . 6 (𝑥 = 0 → ((exp‘𝑥) ∈ ℕ ↔ 1 ∈ ℕ))
3837elrab 3596 . . . . 5 (0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (0 ∈ ℝ ∧ 1 ∈ ℕ))
3932, 33, 38mpbir2an 698 . . . 4 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}
4039a1i 11 . . 3 (𝜑 → 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
414, 25, 26, 31, 40fsumcllem 14949 . 2 (𝜑 → Σ𝑘𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
42 fveq2 6499 . . . . 5 (𝑥 = Σ𝑘𝐴 𝐵 → (exp‘𝑥) = (exp‘Σ𝑘𝐴 𝐵))
4342eleq1d 2851 . . . 4 (𝑥 = Σ𝑘𝐴 𝐵 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ))
4443elrab 3596 . . 3 𝑘𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (Σ𝑘𝐴 𝐵 ∈ ℝ ∧ (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ))
4544simprbi 489 . 2 𝑘𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} → (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ)
4641, 45syl 17 1 (𝜑 → (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  {crab 3093  wss 3830  cfv 6188  (class class class)co 6976  Fincfn 8306  cc 10333  cr 10334  0cc0 10335  1c1 10336   + caddc 10338   · cmul 10340  cn 11439  Σcsu 14903  expce 15275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-ico 12560  df-fz 12709  df-fzo 12850  df-fl 12977  df-seq 13185  df-exp 13245  df-fac 13449  df-bc 13478  df-hash 13506  df-shft 14287  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-limsup 14689  df-clim 14706  df-rlim 14707  df-sum 14904  df-ef 15281
This theorem is referenced by:  efchtcl  25390  efchpcl  25404
  Copyright terms: Public domain W3C validator