| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 4080 |
. . . . 5
⊢ {𝑥 ∈ ℝ ∣
(exp‘𝑥) ∈
ℕ} ⊆ ℝ |
| 2 | | ax-resscn 11212 |
. . . . 5
⊢ ℝ
⊆ ℂ |
| 3 | 1, 2 | sstri 3993 |
. . . 4
⊢ {𝑥 ∈ ℝ ∣
(exp‘𝑥) ∈
ℕ} ⊆ ℂ |
| 4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆
ℂ) |
| 5 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦)) |
| 6 | 5 | eleq1d 2826 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑦) ∈
ℕ)) |
| 7 | 6 | elrab 3692 |
. . . . 5
⊢ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ)) |
| 8 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (exp‘𝑥) = (exp‘𝑧)) |
| 9 | 8 | eleq1d 2826 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑧) ∈
ℕ)) |
| 10 | 9 | elrab 3692 |
. . . . 5
⊢ (𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑧 ∈ ℝ ∧
(exp‘𝑧) ∈
ℕ)) |
| 11 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 𝑧) → (exp‘𝑥) = (exp‘(𝑦 + 𝑧))) |
| 12 | 11 | eleq1d 2826 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 𝑧) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(𝑦 + 𝑧)) ∈ ℕ)) |
| 13 | | simpll 767 |
. . . . . . 7
⊢ (((𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ) ∧ (𝑧 ∈
ℝ ∧ (exp‘𝑧)
∈ ℕ)) → 𝑦
∈ ℝ) |
| 14 | | simprl 771 |
. . . . . . 7
⊢ (((𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ) ∧ (𝑧 ∈
ℝ ∧ (exp‘𝑧)
∈ ℕ)) → 𝑧
∈ ℝ) |
| 15 | 13, 14 | readdcld 11290 |
. . . . . 6
⊢ (((𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ) ∧ (𝑧 ∈
ℝ ∧ (exp‘𝑧)
∈ ℕ)) → (𝑦
+ 𝑧) ∈
ℝ) |
| 16 | 13 | recnd 11289 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ) ∧ (𝑧 ∈
ℝ ∧ (exp‘𝑧)
∈ ℕ)) → 𝑦
∈ ℂ) |
| 17 | 14 | recnd 11289 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ) ∧ (𝑧 ∈
ℝ ∧ (exp‘𝑧)
∈ ℕ)) → 𝑧
∈ ℂ) |
| 18 | | efadd 16130 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧))) |
| 19 | 16, 17, 18 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ) ∧ (𝑧 ∈
ℝ ∧ (exp‘𝑧)
∈ ℕ)) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧))) |
| 20 | | nnmulcl 12290 |
. . . . . . . 8
⊢
(((exp‘𝑦)
∈ ℕ ∧ (exp‘𝑧) ∈ ℕ) → ((exp‘𝑦) · (exp‘𝑧)) ∈
ℕ) |
| 21 | 20 | ad2ant2l 746 |
. . . . . . 7
⊢ (((𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ) ∧ (𝑧 ∈
ℝ ∧ (exp‘𝑧)
∈ ℕ)) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ) |
| 22 | 19, 21 | eqeltrd 2841 |
. . . . . 6
⊢ (((𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ) ∧ (𝑧 ∈
ℝ ∧ (exp‘𝑧)
∈ ℕ)) → (exp‘(𝑦 + 𝑧)) ∈ ℕ) |
| 23 | 12, 15, 22 | elrabd 3694 |
. . . . 5
⊢ (((𝑦 ∈ ℝ ∧
(exp‘𝑦) ∈
ℕ) ∧ (𝑧 ∈
ℝ ∧ (exp‘𝑧)
∈ ℕ)) → (𝑦
+ 𝑧) ∈ {𝑥 ∈ ℝ ∣
(exp‘𝑥) ∈
ℕ}) |
| 24 | 7, 10, 23 | syl2anb 598 |
. . . 4
⊢ ((𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈
ℕ}) |
| 25 | 24 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})) →
(𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈
ℕ}) |
| 26 | | efnnfsumcl.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 27 | | fveq2 6906 |
. . . . 5
⊢ (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵)) |
| 28 | 27 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = 𝐵 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝐵) ∈
ℕ)) |
| 29 | | efnnfsumcl.2 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 30 | | efnnfsumcl.3 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (exp‘𝐵) ∈ ℕ) |
| 31 | 28, 29, 30 | elrabd 3694 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈
ℕ}) |
| 32 | | 0re 11263 |
. . . . 5
⊢ 0 ∈
ℝ |
| 33 | | 1nn 12277 |
. . . . 5
⊢ 1 ∈
ℕ |
| 34 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 0 → (exp‘𝑥) =
(exp‘0)) |
| 35 | | ef0 16127 |
. . . . . . . 8
⊢
(exp‘0) = 1 |
| 36 | 34, 35 | eqtrdi 2793 |
. . . . . . 7
⊢ (𝑥 = 0 → (exp‘𝑥) = 1) |
| 37 | 36 | eleq1d 2826 |
. . . . . 6
⊢ (𝑥 = 0 → ((exp‘𝑥) ∈ ℕ ↔ 1 ∈
ℕ)) |
| 38 | 37 | elrab 3692 |
. . . . 5
⊢ (0 ∈
{𝑥 ∈ ℝ ∣
(exp‘𝑥) ∈
ℕ} ↔ (0 ∈ ℝ ∧ 1 ∈ ℕ)) |
| 39 | 32, 33, 38 | mpbir2an 711 |
. . . 4
⊢ 0 ∈
{𝑥 ∈ ℝ ∣
(exp‘𝑥) ∈
ℕ} |
| 40 | 39 | a1i 11 |
. . 3
⊢ (𝜑 → 0 ∈ {𝑥 ∈ ℝ ∣
(exp‘𝑥) ∈
ℕ}) |
| 41 | 4, 25, 26, 31, 40 | fsumcllem 15768 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈
ℕ}) |
| 42 | | fveq2 6906 |
. . . . 5
⊢ (𝑥 = Σ𝑘 ∈ 𝐴 𝐵 → (exp‘𝑥) = (exp‘Σ𝑘 ∈ 𝐴 𝐵)) |
| 43 | 42 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = Σ𝑘 ∈ 𝐴 𝐵 → ((exp‘𝑥) ∈ ℕ ↔
(exp‘Σ𝑘 ∈
𝐴 𝐵) ∈ ℕ)) |
| 44 | 43 | elrab 3692 |
. . 3
⊢
(Σ𝑘 ∈
𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔
(Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ ∧
(exp‘Σ𝑘 ∈
𝐴 𝐵) ∈ ℕ)) |
| 45 | 44 | simprbi 496 |
. 2
⊢
(Σ𝑘 ∈
𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} →
(exp‘Σ𝑘 ∈
𝐴 𝐵) ∈ ℕ) |
| 46 | 41, 45 | syl 17 |
1
⊢ (𝜑 → (exp‘Σ𝑘 ∈ 𝐴 𝐵) ∈ ℕ) |