MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efnnfsumcl Structured version   Visualization version   GIF version

Theorem efnnfsumcl 27164
Description: Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.)
Hypotheses
Ref Expression
efnnfsumcl.1 (𝜑𝐴 ∈ Fin)
efnnfsumcl.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
efnnfsumcl.3 ((𝜑𝑘𝐴) → (exp‘𝐵) ∈ ℕ)
Assertion
Ref Expression
efnnfsumcl (𝜑 → (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem efnnfsumcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4103 . . . . 5 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℝ
2 ax-resscn 11241 . . . . 5 ℝ ⊆ ℂ
31, 2sstri 4018 . . . 4 {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ
43a1i 11 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ⊆ ℂ)
5 fveq2 6920 . . . . . . 7 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
65eleq1d 2829 . . . . . 6 (𝑥 = 𝑦 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑦) ∈ ℕ))
76elrab 3708 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ))
8 fveq2 6920 . . . . . . 7 (𝑥 = 𝑧 → (exp‘𝑥) = (exp‘𝑧))
98eleq1d 2829 . . . . . 6 (𝑥 = 𝑧 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝑧) ∈ ℕ))
109elrab 3708 . . . . 5 (𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ))
11 fveq2 6920 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → (exp‘𝑥) = (exp‘(𝑦 + 𝑧)))
1211eleq1d 2829 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → ((exp‘𝑥) ∈ ℕ ↔ (exp‘(𝑦 + 𝑧)) ∈ ℕ))
13 simpll 766 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℝ)
14 simprl 770 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℝ)
1513, 14readdcld 11319 . . . . . 6 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ ℝ)
1613recnd 11318 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑦 ∈ ℂ)
1714recnd 11318 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → 𝑧 ∈ ℂ)
18 efadd 16142 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
1916, 17, 18syl2anc 583 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) = ((exp‘𝑦) · (exp‘𝑧)))
20 nnmulcl 12317 . . . . . . . 8 (((exp‘𝑦) ∈ ℕ ∧ (exp‘𝑧) ∈ ℕ) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
2120ad2ant2l 745 . . . . . . 7 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → ((exp‘𝑦) · (exp‘𝑧)) ∈ ℕ)
2219, 21eqeltrd 2844 . . . . . 6 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (exp‘(𝑦 + 𝑧)) ∈ ℕ)
2312, 15, 22elrabd 3710 . . . . 5 (((𝑦 ∈ ℝ ∧ (exp‘𝑦) ∈ ℕ) ∧ (𝑧 ∈ ℝ ∧ (exp‘𝑧) ∈ ℕ)) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
247, 10, 23syl2anb 597 . . . 4 ((𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
2524adantl 481 . . 3 ((𝜑 ∧ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ∧ 𝑧 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})) → (𝑦 + 𝑧) ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
26 efnnfsumcl.1 . . 3 (𝜑𝐴 ∈ Fin)
27 fveq2 6920 . . . . 5 (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵))
2827eleq1d 2829 . . . 4 (𝑥 = 𝐵 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘𝐵) ∈ ℕ))
29 efnnfsumcl.2 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
30 efnnfsumcl.3 . . . 4 ((𝜑𝑘𝐴) → (exp‘𝐵) ∈ ℕ)
3128, 29, 30elrabd 3710 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
32 0re 11292 . . . . 5 0 ∈ ℝ
33 1nn 12304 . . . . 5 1 ∈ ℕ
34 fveq2 6920 . . . . . . . 8 (𝑥 = 0 → (exp‘𝑥) = (exp‘0))
35 ef0 16139 . . . . . . . 8 (exp‘0) = 1
3634, 35eqtrdi 2796 . . . . . . 7 (𝑥 = 0 → (exp‘𝑥) = 1)
3736eleq1d 2829 . . . . . 6 (𝑥 = 0 → ((exp‘𝑥) ∈ ℕ ↔ 1 ∈ ℕ))
3837elrab 3708 . . . . 5 (0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (0 ∈ ℝ ∧ 1 ∈ ℕ))
3932, 33, 38mpbir2an 710 . . . 4 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ}
4039a1i 11 . . 3 (𝜑 → 0 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
414, 25, 26, 31, 40fsumcllem 15780 . 2 (𝜑 → Σ𝑘𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ})
42 fveq2 6920 . . . . 5 (𝑥 = Σ𝑘𝐴 𝐵 → (exp‘𝑥) = (exp‘Σ𝑘𝐴 𝐵))
4342eleq1d 2829 . . . 4 (𝑥 = Σ𝑘𝐴 𝐵 → ((exp‘𝑥) ∈ ℕ ↔ (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ))
4443elrab 3708 . . 3 𝑘𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} ↔ (Σ𝑘𝐴 𝐵 ∈ ℝ ∧ (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ))
4544simprbi 496 . 2 𝑘𝐴 𝐵 ∈ {𝑥 ∈ ℝ ∣ (exp‘𝑥) ∈ ℕ} → (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ)
4641, 45syl 17 1 (𝜑 → (exp‘Σ𝑘𝐴 𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  wss 3976  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cn 12293  Σcsu 15734  expce 16109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115
This theorem is referenced by:  efchtcl  27172  efchpcl  27186
  Copyright terms: Public domain W3C validator