Detailed syntax breakdown of Definition df-shft
| Step | Hyp | Ref
| Expression |
| 1 | | cshi 15105 |
. 2
class
shift |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | vx |
. . 3
setvar 𝑥 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | cc 11153 |
. . 3
class
ℂ |
| 6 | | vy |
. . . . . . 7
setvar 𝑦 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑦 |
| 8 | 7, 5 | wcel 2108 |
. . . . 5
wff 𝑦 ∈ ℂ |
| 9 | 3 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 10 | | cmin 11492 |
. . . . . . 7
class
− |
| 11 | 7, 9, 10 | co 7431 |
. . . . . 6
class (𝑦 − 𝑥) |
| 12 | | vz |
. . . . . . 7
setvar 𝑧 |
| 13 | 12 | cv 1539 |
. . . . . 6
class 𝑧 |
| 14 | 2 | cv 1539 |
. . . . . 6
class 𝑓 |
| 15 | 11, 13, 14 | wbr 5143 |
. . . . 5
wff (𝑦 − 𝑥)𝑓𝑧 |
| 16 | 8, 15 | wa 395 |
. . . 4
wff (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧) |
| 17 | 16, 6, 12 | copab 5205 |
. . 3
class
{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)} |
| 18 | 2, 3, 4, 5, 17 | cmpo 7433 |
. 2
class (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) |
| 19 | 1, 18 | wceq 1540 |
1
wff shift =
(𝑓 ∈ V, 𝑥 ∈ ℂ ↦
{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) |