MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftlem Structured version   Visualization version   GIF version

Theorem shftlem 15076
Description: Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 3414 . 2 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)}
2 npcan 11484 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
32ancoms 458 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
43eqcomd 2740 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
5 oveq1 7407 . . . . . . . . 9 (𝑦 = (𝑥𝐴) → (𝑦 + 𝐴) = ((𝑥𝐴) + 𝐴))
65rspceeqv 3622 . . . . . . . 8 (((𝑥𝐴) ∈ 𝐵𝑥 = ((𝑥𝐴) + 𝐴)) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴))
76expcom 413 . . . . . . 7 (𝑥 = ((𝑥𝐴) + 𝐴) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
84, 7syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
98expimpd 453 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
109adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
11 ssel2 3951 . . . . . . . . . 10 ((𝐵 ⊆ ℂ ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
12 addcl 11204 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
1311, 12sylan 580 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
14 pncan 11481 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
1511, 14sylan 580 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
16 simplr 768 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → 𝑦𝐵)
1715, 16eqeltrd 2833 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)
1813, 17jca 511 . . . . . . . 8 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
1918ancoms 458 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ⊆ ℂ ∧ 𝑦𝐵)) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2019anassrs 467 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
21 eleq1 2821 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ↔ (𝑦 + 𝐴) ∈ ℂ))
22 oveq1 7407 . . . . . . . 8 (𝑥 = (𝑦 + 𝐴) → (𝑥𝐴) = ((𝑦 + 𝐴) − 𝐴))
2322eleq1d 2818 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → ((𝑥𝐴) ∈ 𝐵 ↔ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2421, 23anbi12d 632 . . . . . 6 (𝑥 = (𝑦 + 𝐴) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)))
2520, 24syl5ibrcom 247 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2625rexlimdva 3139 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → (∃𝑦𝐵 𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2710, 26impbid 212 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
2827abbidv 2800 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
291, 28eqtrid 2781 1 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  {crab 3413  wss 3924  (class class class)co 7400  cc 11120   + caddc 11125  cmin 11459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-po 5559  df-so 5560  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-ltxr 11267  df-sub 11461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator