MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftlem Structured version   Visualization version   GIF version

Theorem shftlem 14977
Description: Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 3397 . 2 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)}
2 npcan 11376 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
32ancoms 458 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
43eqcomd 2739 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
5 oveq1 7359 . . . . . . . . 9 (𝑦 = (𝑥𝐴) → (𝑦 + 𝐴) = ((𝑥𝐴) + 𝐴))
65rspceeqv 3596 . . . . . . . 8 (((𝑥𝐴) ∈ 𝐵𝑥 = ((𝑥𝐴) + 𝐴)) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴))
76expcom 413 . . . . . . 7 (𝑥 = ((𝑥𝐴) + 𝐴) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
84, 7syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥𝐴) ∈ 𝐵 → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
98expimpd 453 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
109adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) → ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
11 ssel2 3925 . . . . . . . . . 10 ((𝐵 ⊆ ℂ ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
12 addcl 11095 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
1311, 12sylan 580 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → (𝑦 + 𝐴) ∈ ℂ)
14 pncan 11373 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
1511, 14sylan 580 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) = 𝑦)
16 simplr 768 . . . . . . . . . 10 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → 𝑦𝐵)
1715, 16eqeltrd 2833 . . . . . . . . 9 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)
1813, 17jca 511 . . . . . . . 8 (((𝐵 ⊆ ℂ ∧ 𝑦𝐵) ∧ 𝐴 ∈ ℂ) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
1918ancoms 458 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ⊆ ℂ ∧ 𝑦𝐵)) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2019anassrs 467 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
21 eleq1 2821 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ↔ (𝑦 + 𝐴) ∈ ℂ))
22 oveq1 7359 . . . . . . . 8 (𝑥 = (𝑦 + 𝐴) → (𝑥𝐴) = ((𝑦 + 𝐴) − 𝐴))
2322eleq1d 2818 . . . . . . 7 (𝑥 = (𝑦 + 𝐴) → ((𝑥𝐴) ∈ 𝐵 ↔ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵))
2421, 23anbi12d 632 . . . . . 6 (𝑥 = (𝑦 + 𝐴) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ((𝑦 + 𝐴) ∈ ℂ ∧ ((𝑦 + 𝐴) − 𝐴) ∈ 𝐵)))
2520, 24syl5ibrcom 247 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑦𝐵) → (𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2625rexlimdva 3134 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → (∃𝑦𝐵 𝑥 = (𝑦 + 𝐴) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)))
2710, 26impbid 212 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)))
2827abbidv 2799 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ 𝐵)} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
291, 28eqtrid 2780 1 ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦𝐵 𝑥 = (𝑦 + 𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  {crab 3396  wss 3898  (class class class)co 7352  cc 11011   + caddc 11016  cmin 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-sub 11353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator