MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfval Structured version   Visualization version   GIF version

Theorem shftfval 14979
Description: The value of the sequence shifter operation is a function on . 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfval (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem shftfval
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7385 . . . . . . . . . 10 (𝑥𝐴) ∈ V
2 vex 3441 . . . . . . . . . 10 𝑦 ∈ V
31, 2breldm 5852 . . . . . . . . 9 ((𝑥𝐴)𝐹𝑦 → (𝑥𝐴) ∈ dom 𝐹)
4 npcan 11376 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
54eqcomd 2739 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
65ancoms 458 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
7 oveq1 7359 . . . . . . . . . 10 (𝑤 = (𝑥𝐴) → (𝑤 + 𝐴) = ((𝑥𝐴) + 𝐴))
87rspceeqv 3596 . . . . . . . . 9 (((𝑥𝐴) ∈ dom 𝐹𝑥 = ((𝑥𝐴) + 𝐴)) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
93, 6, 8syl2anr 597 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
10 vex 3441 . . . . . . . . 9 𝑥 ∈ V
11 eqeq1 2737 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 = (𝑤 + 𝐴) ↔ 𝑥 = (𝑤 + 𝐴)))
1211rexbidv 3157 . . . . . . . . 9 (𝑧 = 𝑥 → (∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴) ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)))
1310, 12elab 3631 . . . . . . . 8 (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
149, 13sylibr 234 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)})
151, 2brelrn 5886 . . . . . . . 8 ((𝑥𝐴)𝐹𝑦𝑦 ∈ ran 𝐹)
1615adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹)
1714, 16jca 511 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹))
1817expl 457 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)))
1918ssopab2dv 5494 . . . 4 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)})
20 df-xp 5625 . . . 4 ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)}
2119, 20sseqtrrdi 3972 . . 3 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹))
22 shftfval.1 . . . . . 6 𝐹 ∈ V
2322dmex 7845 . . . . 5 dom 𝐹 ∈ V
2423abrexex 7900 . . . 4 {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V
2522rnex 7846 . . . 4 ran 𝐹 ∈ V
2624, 25xpex 7692 . . 3 ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V
27 ssexg 5263 . . 3 (({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∧ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V)
2821, 26, 27sylancl 586 . 2 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V)
29 breq 5095 . . . . . 6 (𝑧 = 𝐹 → ((𝑥𝑤)𝑧𝑦 ↔ (𝑥𝑤)𝐹𝑦))
3029anbi2d 630 . . . . 5 (𝑧 = 𝐹 → ((𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)))
3130opabbidv 5159 . . . 4 (𝑧 = 𝐹 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)})
32 oveq2 7360 . . . . . . 7 (𝑤 = 𝐴 → (𝑥𝑤) = (𝑥𝐴))
3332breq1d 5103 . . . . . 6 (𝑤 = 𝐴 → ((𝑥𝑤)𝐹𝑦 ↔ (𝑥𝐴)𝐹𝑦))
3433anbi2d 630 . . . . 5 (𝑤 = 𝐴 → ((𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)))
3534opabbidv 5159 . . . 4 (𝑤 = 𝐴 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
36 df-shft 14976 . . . 4 shift = (𝑧 ∈ V, 𝑤 ∈ ℂ ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦)})
3731, 35, 36ovmpog 7511 . . 3 ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
3822, 37mp3an1 1450 . 2 ((𝐴 ∈ ℂ ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
3928, 38mpdan 687 1 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437  wss 3898   class class class wbr 5093  {copab 5155   × cxp 5617  dom cdm 5619  ran crn 5620  (class class class)co 7352  cc 11011   + caddc 11016  cmin 11351   shift cshi 14975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-sub 11353  df-shft 14976
This theorem is referenced by:  shftdm  14980  shftfib  14981  shftfn  14982  2shfti  14989  shftidt2  14990
  Copyright terms: Public domain W3C validator