Detailed syntax breakdown of Definition df-slw
| Step | Hyp | Ref
| Expression |
| 1 | | cslw 19518 |
. 2
class
pSyl |
| 2 | | vp |
. . 3
setvar 𝑝 |
| 3 | | vg |
. . 3
setvar 𝑔 |
| 4 | | cprime 16691 |
. . 3
class
ℙ |
| 5 | | cgrp 18925 |
. . 3
class
Grp |
| 6 | | vh |
. . . . . . . . 9
setvar ℎ |
| 7 | 6 | cv 1538 |
. . . . . . . 8
class ℎ |
| 8 | | vk |
. . . . . . . . 9
setvar 𝑘 |
| 9 | 8 | cv 1538 |
. . . . . . . 8
class 𝑘 |
| 10 | 7, 9 | wss 3933 |
. . . . . . 7
wff ℎ ⊆ 𝑘 |
| 11 | 2 | cv 1538 |
. . . . . . . 8
class 𝑝 |
| 12 | 3 | cv 1538 |
. . . . . . . . 9
class 𝑔 |
| 13 | | cress 17256 |
. . . . . . . . 9
class
↾s |
| 14 | 12, 9, 13 | co 7414 |
. . . . . . . 8
class (𝑔 ↾s 𝑘) |
| 15 | | cpgp 19517 |
. . . . . . . 8
class
pGrp |
| 16 | 11, 14, 15 | wbr 5125 |
. . . . . . 7
wff 𝑝 pGrp (𝑔 ↾s 𝑘) |
| 17 | 10, 16 | wa 395 |
. . . . . 6
wff (ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) |
| 18 | 6, 8 | weq 1961 |
. . . . . 6
wff ℎ = 𝑘 |
| 19 | 17, 18 | wb 206 |
. . . . 5
wff ((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘) |
| 20 | | csubg 19112 |
. . . . . 6
class
SubGrp |
| 21 | 12, 20 | cfv 6542 |
. . . . 5
class
(SubGrp‘𝑔) |
| 22 | 19, 8, 21 | wral 3050 |
. . . 4
wff
∀𝑘 ∈
(SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘) |
| 23 | 22, 6, 21 | crab 3420 |
. . 3
class {ℎ ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘)} |
| 24 | 2, 3, 4, 5, 23 | cmpo 7416 |
. 2
class (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ {ℎ ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘)}) |
| 25 | 1, 24 | wceq 1539 |
1
wff pSyl =
(𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ {ℎ ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘)}) |