MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isslw Structured version   Visualization version   GIF version

Theorem isslw 19470
Description: The property of being a Sylow subgroup. A Sylow 𝑃-subgroup is a 𝑃-group which has no proper supersets that are also 𝑃-groups. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
isslw (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐻   𝑃,𝑘

Proof of Theorem isslw
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-slw 19393 . . 3 pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)})
21elmpocl 7644 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
3 simp1 1136 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝑃 ∈ ℙ)
4 subgrcl 19005 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
543ad2ant2 1134 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝐺 ∈ Grp)
63, 5jca 512 . 2 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
7 simpr 485 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
87fveq2d 6892 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (SubGrp‘𝑔) = (SubGrp‘𝐺))
9 simpl 483 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
107oveq1d 7420 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑔s 𝑘) = (𝐺s 𝑘))
119, 10breq12d 5160 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝 pGrp (𝑔s 𝑘) ↔ 𝑃 pGrp (𝐺s 𝑘)))
1211anbi2d 629 . . . . . . . . . 10 ((𝑝 = 𝑃𝑔 = 𝐺) → ((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ (𝑘𝑃 pGrp (𝐺s 𝑘))))
1312bibi1d 343 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → (((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
148, 13raleqbidv 3342 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
158, 14rabeqbidv 3449 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)} = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
16 fvex 6901 . . . . . . . 8 (SubGrp‘𝐺) ∈ V
1716rabex 5331 . . . . . . 7 { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ∈ V
1815, 1, 17ovmpoa 7559 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝑃 pSyl 𝐺) = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
1918eleq2d 2819 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ 𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)}))
20 cleq1lem 14925 . . . . . . . 8 ( = 𝐻 → ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
21 eqeq1 2736 . . . . . . . 8 ( = 𝐻 → ( = 𝑘𝐻 = 𝑘))
2220, 21bibi12d 345 . . . . . . 7 ( = 𝐻 → (((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2322ralbidv 3177 . . . . . 6 ( = 𝐻 → (∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2423elrab 3682 . . . . 5 (𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2519, 24bitrdi 286 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
26 simpl 483 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → 𝑃 ∈ ℙ)
2726biantrurd 533 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → ((𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
2825, 27bitrd 278 . . 3 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
29 3anass 1095 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
3028, 29bitr4di 288 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
312, 6, 30pm5.21nii 379 1 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  {crab 3432  wss 3947   class class class wbr 5147  cfv 6540  (class class class)co 7405  cprime 16604  s cress 17169  Grpcgrp 18815  SubGrpcsubg 18994   pGrp cpgp 19388   pSyl cslw 19389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-subg 18997  df-slw 19393
This theorem is referenced by:  slwprm  19471  slwsubg  19472  slwispgp  19473  pgpssslw  19476  subgslw  19478  fislw  19487
  Copyright terms: Public domain W3C validator