MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isslw Structured version   Visualization version   GIF version

Theorem isslw 19476
Description: The property of being a Sylow subgroup. A Sylow 𝑃-subgroup is a 𝑃-group which has no proper supersets that are also 𝑃-groups. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
isslw (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐻   𝑃,𝑘

Proof of Theorem isslw
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-slw 19399 . . 3 pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)})
21elmpocl 7648 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
3 simp1 1137 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝑃 ∈ ℙ)
4 subgrcl 19011 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
543ad2ant2 1135 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝐺 ∈ Grp)
63, 5jca 513 . 2 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
7 simpr 486 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
87fveq2d 6896 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (SubGrp‘𝑔) = (SubGrp‘𝐺))
9 simpl 484 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
107oveq1d 7424 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑔s 𝑘) = (𝐺s 𝑘))
119, 10breq12d 5162 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝 pGrp (𝑔s 𝑘) ↔ 𝑃 pGrp (𝐺s 𝑘)))
1211anbi2d 630 . . . . . . . . . 10 ((𝑝 = 𝑃𝑔 = 𝐺) → ((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ (𝑘𝑃 pGrp (𝐺s 𝑘))))
1312bibi1d 344 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → (((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
148, 13raleqbidv 3343 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
158, 14rabeqbidv 3450 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)} = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
16 fvex 6905 . . . . . . . 8 (SubGrp‘𝐺) ∈ V
1716rabex 5333 . . . . . . 7 { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ∈ V
1815, 1, 17ovmpoa 7563 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝑃 pSyl 𝐺) = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
1918eleq2d 2820 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ 𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)}))
20 cleq1lem 14929 . . . . . . . 8 ( = 𝐻 → ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
21 eqeq1 2737 . . . . . . . 8 ( = 𝐻 → ( = 𝑘𝐻 = 𝑘))
2220, 21bibi12d 346 . . . . . . 7 ( = 𝐻 → (((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2322ralbidv 3178 . . . . . 6 ( = 𝐻 → (∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2423elrab 3684 . . . . 5 (𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2519, 24bitrdi 287 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
26 simpl 484 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → 𝑃 ∈ ℙ)
2726biantrurd 534 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → ((𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
2825, 27bitrd 279 . . 3 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
29 3anass 1096 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
3028, 29bitr4di 289 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
312, 6, 30pm5.21nii 380 1 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  {crab 3433  wss 3949   class class class wbr 5149  cfv 6544  (class class class)co 7409  cprime 16608  s cress 17173  Grpcgrp 18819  SubGrpcsubg 19000   pGrp cpgp 19394   pSyl cslw 19395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-subg 19003  df-slw 19399
This theorem is referenced by:  slwprm  19477  slwsubg  19478  slwispgp  19479  pgpssslw  19482  subgslw  19484  fislw  19493
  Copyright terms: Public domain W3C validator