MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isslw Structured version   Visualization version   GIF version

Theorem isslw 19650
Description: The property of being a Sylow subgroup. A Sylow 𝑃-subgroup is a 𝑃-group which has no proper supersets that are also 𝑃-groups. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
isslw (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐻   𝑃,𝑘

Proof of Theorem isslw
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-slw 19573 . . 3 pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)})
21elmpocl 7691 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
3 simp1 1136 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝑃 ∈ ℙ)
4 subgrcl 19171 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
543ad2ant2 1134 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝐺 ∈ Grp)
63, 5jca 511 . 2 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
7 simpr 484 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
87fveq2d 6924 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (SubGrp‘𝑔) = (SubGrp‘𝐺))
9 simpl 482 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
107oveq1d 7463 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑔s 𝑘) = (𝐺s 𝑘))
119, 10breq12d 5179 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝 pGrp (𝑔s 𝑘) ↔ 𝑃 pGrp (𝐺s 𝑘)))
1211anbi2d 629 . . . . . . . . . 10 ((𝑝 = 𝑃𝑔 = 𝐺) → ((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ (𝑘𝑃 pGrp (𝐺s 𝑘))))
1312bibi1d 343 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → (((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
148, 13raleqbidv 3354 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
158, 14rabeqbidv 3462 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)} = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
16 fvex 6933 . . . . . . . 8 (SubGrp‘𝐺) ∈ V
1716rabex 5357 . . . . . . 7 { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ∈ V
1815, 1, 17ovmpoa 7605 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝑃 pSyl 𝐺) = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
1918eleq2d 2830 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ 𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)}))
20 cleq1lem 15031 . . . . . . . 8 ( = 𝐻 → ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
21 eqeq1 2744 . . . . . . . 8 ( = 𝐻 → ( = 𝑘𝐻 = 𝑘))
2220, 21bibi12d 345 . . . . . . 7 ( = 𝐻 → (((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2322ralbidv 3184 . . . . . 6 ( = 𝐻 → (∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2423elrab 3708 . . . . 5 (𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2519, 24bitrdi 287 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
26 simpl 482 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → 𝑃 ∈ ℙ)
2726biantrurd 532 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → ((𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
2825, 27bitrd 279 . . 3 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
29 3anass 1095 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
3028, 29bitr4di 289 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
312, 6, 30pm5.21nii 378 1 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  cprime 16718  s cress 17287  Grpcgrp 18973  SubGrpcsubg 19160   pGrp cpgp 19568   pSyl cslw 19569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-subg 19163  df-slw 19573
This theorem is referenced by:  slwprm  19651  slwsubg  19652  slwispgp  19653  pgpssslw  19656  subgslw  19658  fislw  19667
  Copyright terms: Public domain W3C validator