MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isslw Structured version   Visualization version   GIF version

Theorem isslw 19594
Description: The property of being a Sylow subgroup. A Sylow 𝑃-subgroup is a 𝑃-group which has no proper supersets that are also 𝑃-groups. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
isslw (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐻   𝑃,𝑘

Proof of Theorem isslw
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-slw 19517 . . 3 pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)})
21elmpocl 7653 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
3 simp1 1136 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝑃 ∈ ℙ)
4 subgrcl 19119 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
543ad2ant2 1134 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝐺 ∈ Grp)
63, 5jca 511 . 2 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
7 simpr 484 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
87fveq2d 6885 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (SubGrp‘𝑔) = (SubGrp‘𝐺))
9 simpl 482 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
107oveq1d 7425 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑔s 𝑘) = (𝐺s 𝑘))
119, 10breq12d 5137 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝 pGrp (𝑔s 𝑘) ↔ 𝑃 pGrp (𝐺s 𝑘)))
1211anbi2d 630 . . . . . . . . . 10 ((𝑝 = 𝑃𝑔 = 𝐺) → ((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ (𝑘𝑃 pGrp (𝐺s 𝑘))))
1312bibi1d 343 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → (((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
148, 13raleqbidv 3329 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
158, 14rabeqbidv 3439 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)} = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
16 fvex 6894 . . . . . . . 8 (SubGrp‘𝐺) ∈ V
1716rabex 5314 . . . . . . 7 { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ∈ V
1815, 1, 17ovmpoa 7567 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝑃 pSyl 𝐺) = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
1918eleq2d 2821 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ 𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)}))
20 cleq1lem 15006 . . . . . . . 8 ( = 𝐻 → ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
21 eqeq1 2740 . . . . . . . 8 ( = 𝐻 → ( = 𝑘𝐻 = 𝑘))
2220, 21bibi12d 345 . . . . . . 7 ( = 𝐻 → (((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2322ralbidv 3164 . . . . . 6 ( = 𝐻 → (∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2423elrab 3676 . . . . 5 (𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2519, 24bitrdi 287 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
26 simpl 482 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → 𝑃 ∈ ℙ)
2726biantrurd 532 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → ((𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
2825, 27bitrd 279 . . 3 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
29 3anass 1094 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
3028, 29bitr4di 289 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
312, 6, 30pm5.21nii 378 1 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {crab 3420  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  cprime 16695  s cress 17256  Grpcgrp 18921  SubGrpcsubg 19108   pGrp cpgp 19512   pSyl cslw 19513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-subg 19111  df-slw 19517
This theorem is referenced by:  slwprm  19595  slwsubg  19596  slwispgp  19597  pgpssslw  19600  subgslw  19602  fislw  19611
  Copyright terms: Public domain W3C validator