MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odfval Structured version   Visualization version   GIF version

Theorem odfval 18663
Description: Value of the order function. For a shorter proof using ax-rep 5193, see odfvalALT 18664. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) Remove depedency on ax-rep 5193. (Revised by Rohan Ridenour, 17-Aug-2023.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odfval 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Distinct variable groups:   𝑦,𝑖,𝑥   𝑥,𝐺,𝑦   𝑥, · ,𝑖,𝑦   𝑥, 0 ,𝑦,𝑖   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑖)   𝑂(𝑥,𝑦,𝑖)   𝑋(𝑦,𝑖)

Proof of Theorem odfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 odval.4 . 2 𝑂 = (od‘𝐺)
2 fveq2 6673 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 odval.1 . . . . . 6 𝑋 = (Base‘𝐺)
42, 3syl6eqr 2877 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
5 fveq2 6673 . . . . . . . . . 10 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
6 odval.2 . . . . . . . . . 10 · = (.g𝐺)
75, 6syl6eqr 2877 . . . . . . . . 9 (𝑔 = 𝐺 → (.g𝑔) = · )
87oveqd 7176 . . . . . . . 8 (𝑔 = 𝐺 → (𝑦(.g𝑔)𝑥) = (𝑦 · 𝑥))
9 fveq2 6673 . . . . . . . . 9 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 odval.3 . . . . . . . . 9 0 = (0g𝐺)
119, 10syl6eqr 2877 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2840 . . . . . . 7 (𝑔 = 𝐺 → ((𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 · 𝑥) = 0 ))
1312rabbidv 3483 . . . . . 6 (𝑔 = 𝐺 → {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
1413csbeq1d 3890 . . . . 5 (𝑔 = 𝐺{𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
154, 14mpteq12dv 5154 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
16 df-od 18659 . . . 4 od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
173fvexi 6687 . . . . 5 𝑋 ∈ V
18 nn0ex 11906 . . . . 5 0 ∈ V
19 nnex 11647 . . . . . . . . 9 ℕ ∈ V
2019rabex 5238 . . . . . . . 8 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ∈ V
21 eqeq1 2828 . . . . . . . . 9 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → (𝑖 = ∅ ↔ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅))
22 infeq1 8943 . . . . . . . . 9 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → inf(𝑖, ℝ, < ) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ))
2321, 22ifbieq2d 4495 . . . . . . . 8 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )))
2420, 23csbie 3921 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ))
25 0nn0 11915 . . . . . . . . . 10 0 ∈ ℕ0
2625a1i 11 . . . . . . . . 9 ((⊤ ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅) → 0 ∈ ℕ0)
27 df-ne 3020 . . . . . . . . . . . 12 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ ↔ ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅)
28 ssrab2 4059 . . . . . . . . . . . . 13 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ ℕ
29 nnuz 12284 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
3028, 29sseqtri 4006 . . . . . . . . . . . . . 14 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1)
31 infssuzcl 12335 . . . . . . . . . . . . . 14 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
3230, 31mpan 688 . . . . . . . . . . . . 13 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
3328, 32sseldi 3968 . . . . . . . . . . . 12 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
3427, 33sylbir 237 . . . . . . . . . . 11 (¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
3534nnnn0d 11958 . . . . . . . . . 10 (¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ0)
3635adantl 484 . . . . . . . . 9 ((⊤ ∧ ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ0)
3726, 36ifclda 4504 . . . . . . . 8 (⊤ → if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )) ∈ ℕ0)
3837mptru 1543 . . . . . . 7 if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )) ∈ ℕ0
3924, 38eqeltri 2912 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) ∈ ℕ0
4039rgenw 3153 . . . . 5 𝑥𝑋 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) ∈ ℕ0
4117, 18, 40mptexw 7657 . . . 4 (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) ∈ V
4215, 16, 41fvmpt 6771 . . 3 (𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
43 fvprc 6666 . . . 4 𝐺 ∈ V → (od‘𝐺) = ∅)
44 fvprc 6666 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
453, 44syl5eq 2871 . . . . . 6 𝐺 ∈ V → 𝑋 = ∅)
4645mpteq1d 5158 . . . . 5 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
47 mpt0 6493 . . . . 5 (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅
4846, 47syl6eq 2875 . . . 4 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅)
4943, 48eqtr4d 2862 . . 3 𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
5042, 49pm2.61i 184 . 2 (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
511, 50eqtri 2847 1 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1536  wtru 1537  wcel 2113  wne 3019  {crab 3145  Vcvv 3497  csb 3886  wss 3939  c0 4294  ifcif 4470  cmpt 5149  cfv 6358  (class class class)co 7159  infcinf 8908  cr 10539  0cc0 10540  1c1 10541   < clt 10678  cn 11641  0cn0 11900  cuz 12246  Basecbs 16486  0gc0g 16716  .gcmg 18227  odcod 18655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-od 18659
This theorem is referenced by:  odval  18665  odf  18668
  Copyright terms: Public domain W3C validator