MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odfval Structured version   Visualization version   GIF version

Theorem odfval 18924
Description: Value of the order function. For a shorter proof using ax-rep 5179, see odfvalALT 18925. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) Remove dependency on ax-rep 5179. (Revised by Rohan Ridenour, 17-Aug-2023.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odfval 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Distinct variable groups:   𝑦,𝑖,𝑥   𝑥,𝐺,𝑦   𝑥, · ,𝑖,𝑦   𝑥, 0 ,𝑦,𝑖   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑖)   𝑂(𝑥,𝑦,𝑖)   𝑋(𝑦,𝑖)

Proof of Theorem odfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 odval.4 . 2 𝑂 = (od‘𝐺)
2 fveq2 6717 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 odval.1 . . . . . 6 𝑋 = (Base‘𝐺)
42, 3eqtr4di 2796 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
5 fveq2 6717 . . . . . . . . . 10 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
6 odval.2 . . . . . . . . . 10 · = (.g𝐺)
75, 6eqtr4di 2796 . . . . . . . . 9 (𝑔 = 𝐺 → (.g𝑔) = · )
87oveqd 7230 . . . . . . . 8 (𝑔 = 𝐺 → (𝑦(.g𝑔)𝑥) = (𝑦 · 𝑥))
9 fveq2 6717 . . . . . . . . 9 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 odval.3 . . . . . . . . 9 0 = (0g𝐺)
119, 10eqtr4di 2796 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2753 . . . . . . 7 (𝑔 = 𝐺 → ((𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 · 𝑥) = 0 ))
1312rabbidv 3390 . . . . . 6 (𝑔 = 𝐺 → {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
1413csbeq1d 3815 . . . . 5 (𝑔 = 𝐺{𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
154, 14mpteq12dv 5140 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
16 df-od 18920 . . . 4 od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
173fvexi 6731 . . . . 5 𝑋 ∈ V
18 nn0ex 12096 . . . . 5 0 ∈ V
19 nnex 11836 . . . . . . . . 9 ℕ ∈ V
2019rabex 5225 . . . . . . . 8 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ∈ V
21 eqeq1 2741 . . . . . . . . 9 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → (𝑖 = ∅ ↔ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅))
22 infeq1 9092 . . . . . . . . 9 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → inf(𝑖, ℝ, < ) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ))
2321, 22ifbieq2d 4465 . . . . . . . 8 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )))
2420, 23csbie 3847 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ))
25 0nn0 12105 . . . . . . . . . 10 0 ∈ ℕ0
2625a1i 11 . . . . . . . . 9 ((⊤ ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅) → 0 ∈ ℕ0)
27 df-ne 2941 . . . . . . . . . . . 12 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ ↔ ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅)
28 ssrab2 3993 . . . . . . . . . . . . 13 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ ℕ
29 nnuz 12477 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
3028, 29sseqtri 3937 . . . . . . . . . . . . . 14 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1)
31 infssuzcl 12528 . . . . . . . . . . . . . 14 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
3230, 31mpan 690 . . . . . . . . . . . . 13 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
3328, 32sseldi 3899 . . . . . . . . . . . 12 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
3427, 33sylbir 238 . . . . . . . . . . 11 (¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
3534nnnn0d 12150 . . . . . . . . . 10 (¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ0)
3635adantl 485 . . . . . . . . 9 ((⊤ ∧ ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ0)
3726, 36ifclda 4474 . . . . . . . 8 (⊤ → if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )) ∈ ℕ0)
3837mptru 1550 . . . . . . 7 if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )) ∈ ℕ0
3924, 38eqeltri 2834 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) ∈ ℕ0
4039rgenw 3073 . . . . 5 𝑥𝑋 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) ∈ ℕ0
4117, 18, 40mptexw 7726 . . . 4 (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) ∈ V
4215, 16, 41fvmpt 6818 . . 3 (𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
43 fvprc 6709 . . . 4 𝐺 ∈ V → (od‘𝐺) = ∅)
44 fvprc 6709 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
453, 44syl5eq 2790 . . . . . 6 𝐺 ∈ V → 𝑋 = ∅)
4645mpteq1d 5144 . . . . 5 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
47 mpt0 6520 . . . . 5 (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅
4846, 47eqtrdi 2794 . . . 4 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅)
4943, 48eqtr4d 2780 . . 3 𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
5042, 49pm2.61i 185 . 2 (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
511, 50eqtri 2765 1 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1543  wtru 1544  wcel 2110  wne 2940  {crab 3065  Vcvv 3408  csb 3811  wss 3866  c0 4237  ifcif 4439  cmpt 5135  cfv 6380  (class class class)co 7213  infcinf 9057  cr 10728  0cc0 10729  1c1 10730   < clt 10867  cn 11830  0cn0 12090  cuz 12438  Basecbs 16760  0gc0g 16944  .gcmg 18488  odcod 18916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-od 18920
This theorem is referenced by:  odval  18926  odf  18929
  Copyright terms: Public domain W3C validator