MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odfval Structured version   Visualization version   GIF version

Theorem odfval 19462
Description: Value of the order function. For a shorter proof using ax-rep 5234, see odfvalALT 19463. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) Remove dependency on ax-rep 5234. (Revised by Rohan Ridenour, 17-Aug-2023.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odfval 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Distinct variable groups:   𝑦,𝑖,𝑥   𝑥,𝐺,𝑦   𝑥, · ,𝑖,𝑦   𝑥, 0 ,𝑦,𝑖   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑖)   𝑂(𝑥,𝑦,𝑖)   𝑋(𝑦,𝑖)

Proof of Theorem odfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 odval.4 . 2 𝑂 = (od‘𝐺)
2 fveq2 6858 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 odval.1 . . . . . 6 𝑋 = (Base‘𝐺)
42, 3eqtr4di 2782 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
5 fveq2 6858 . . . . . . . . . 10 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
6 odval.2 . . . . . . . . . 10 · = (.g𝐺)
75, 6eqtr4di 2782 . . . . . . . . 9 (𝑔 = 𝐺 → (.g𝑔) = · )
87oveqd 7404 . . . . . . . 8 (𝑔 = 𝐺 → (𝑦(.g𝑔)𝑥) = (𝑦 · 𝑥))
9 fveq2 6858 . . . . . . . . 9 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 odval.3 . . . . . . . . 9 0 = (0g𝐺)
119, 10eqtr4di 2782 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2745 . . . . . . 7 (𝑔 = 𝐺 → ((𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 · 𝑥) = 0 ))
1312rabbidv 3413 . . . . . 6 (𝑔 = 𝐺 → {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
1413csbeq1d 3866 . . . . 5 (𝑔 = 𝐺{𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
154, 14mpteq12dv 5194 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
16 df-od 19458 . . . 4 od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
173fvexi 6872 . . . . 5 𝑋 ∈ V
18 nn0ex 12448 . . . . 5 0 ∈ V
19 nnex 12192 . . . . . . . . 9 ℕ ∈ V
2019rabex 5294 . . . . . . . 8 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ∈ V
21 eqeq1 2733 . . . . . . . . 9 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → (𝑖 = ∅ ↔ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅))
22 infeq1 9428 . . . . . . . . 9 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → inf(𝑖, ℝ, < ) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ))
2321, 22ifbieq2d 4515 . . . . . . . 8 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )))
2420, 23csbie 3897 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ))
25 0nn0 12457 . . . . . . . . . 10 0 ∈ ℕ0
2625a1i 11 . . . . . . . . 9 ((⊤ ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅) → 0 ∈ ℕ0)
27 df-ne 2926 . . . . . . . . . . . 12 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ ↔ ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅)
28 ssrab2 4043 . . . . . . . . . . . . 13 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ ℕ
29 nnuz 12836 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
3028, 29sseqtri 3995 . . . . . . . . . . . . . 14 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1)
31 infssuzcl 12891 . . . . . . . . . . . . . 14 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
3230, 31mpan 690 . . . . . . . . . . . . 13 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
3328, 32sselid 3944 . . . . . . . . . . . 12 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
3427, 33sylbir 235 . . . . . . . . . . 11 (¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
3534nnnn0d 12503 . . . . . . . . . 10 (¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ0)
3635adantl 481 . . . . . . . . 9 ((⊤ ∧ ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ0)
3726, 36ifclda 4524 . . . . . . . 8 (⊤ → if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )) ∈ ℕ0)
3837mptru 1547 . . . . . . 7 if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )) ∈ ℕ0
3924, 38eqeltri 2824 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) ∈ ℕ0
4039rgenw 3048 . . . . 5 𝑥𝑋 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) ∈ ℕ0
4117, 18, 40mptexw 7931 . . . 4 (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) ∈ V
4215, 16, 41fvmpt 6968 . . 3 (𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
43 fvprc 6850 . . . 4 𝐺 ∈ V → (od‘𝐺) = ∅)
44 fvprc 6850 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
453, 44eqtrid 2776 . . . . . 6 𝐺 ∈ V → 𝑋 = ∅)
4645mpteq1d 5197 . . . . 5 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
47 mpt0 6660 . . . . 5 (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅
4846, 47eqtrdi 2780 . . . 4 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅)
4943, 48eqtr4d 2767 . . 3 𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
5042, 49pm2.61i 182 . 2 (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
511, 50eqtri 2752 1 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  csb 3862  wss 3914  c0 4296  ifcif 4488  cmpt 5188  cfv 6511  (class class class)co 7387  infcinf 9392  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cn 12186  0cn0 12442  cuz 12793  Basecbs 17179  0gc0g 17402  .gcmg 18999  odcod 19454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-od 19458
This theorem is referenced by:  odval  19464  odf  19467
  Copyright terms: Public domain W3C validator