MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odfval Structured version   Visualization version   GIF version

Theorem odfval 19469
Description: Value of the order function. For a shorter proof using ax-rep 5237, see odfvalALT 19470. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) Remove dependency on ax-rep 5237. (Revised by Rohan Ridenour, 17-Aug-2023.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odfval 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Distinct variable groups:   𝑦,𝑖,𝑥   𝑥,𝐺,𝑦   𝑥, · ,𝑖,𝑦   𝑥, 0 ,𝑦,𝑖   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑖)   𝑂(𝑥,𝑦,𝑖)   𝑋(𝑦,𝑖)

Proof of Theorem odfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 odval.4 . 2 𝑂 = (od‘𝐺)
2 fveq2 6861 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 odval.1 . . . . . 6 𝑋 = (Base‘𝐺)
42, 3eqtr4di 2783 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
5 fveq2 6861 . . . . . . . . . 10 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
6 odval.2 . . . . . . . . . 10 · = (.g𝐺)
75, 6eqtr4di 2783 . . . . . . . . 9 (𝑔 = 𝐺 → (.g𝑔) = · )
87oveqd 7407 . . . . . . . 8 (𝑔 = 𝐺 → (𝑦(.g𝑔)𝑥) = (𝑦 · 𝑥))
9 fveq2 6861 . . . . . . . . 9 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 odval.3 . . . . . . . . 9 0 = (0g𝐺)
119, 10eqtr4di 2783 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2746 . . . . . . 7 (𝑔 = 𝐺 → ((𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 · 𝑥) = 0 ))
1312rabbidv 3416 . . . . . 6 (𝑔 = 𝐺 → {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
1413csbeq1d 3869 . . . . 5 (𝑔 = 𝐺{𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
154, 14mpteq12dv 5197 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
16 df-od 19465 . . . 4 od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
173fvexi 6875 . . . . 5 𝑋 ∈ V
18 nn0ex 12455 . . . . 5 0 ∈ V
19 nnex 12199 . . . . . . . . 9 ℕ ∈ V
2019rabex 5297 . . . . . . . 8 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ∈ V
21 eqeq1 2734 . . . . . . . . 9 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → (𝑖 = ∅ ↔ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅))
22 infeq1 9435 . . . . . . . . 9 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → inf(𝑖, ℝ, < ) = inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ))
2321, 22ifbieq2d 4518 . . . . . . . 8 (𝑖 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } → if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )))
2420, 23csbie 3900 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ))
25 0nn0 12464 . . . . . . . . . 10 0 ∈ ℕ0
2625a1i 11 . . . . . . . . 9 ((⊤ ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅) → 0 ∈ ℕ0)
27 df-ne 2927 . . . . . . . . . . . 12 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ ↔ ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅)
28 ssrab2 4046 . . . . . . . . . . . . 13 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ ℕ
29 nnuz 12843 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
3028, 29sseqtri 3998 . . . . . . . . . . . . . 14 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1)
31 infssuzcl 12898 . . . . . . . . . . . . . 14 (({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
3230, 31mpan 690 . . . . . . . . . . . . 13 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
3328, 32sselid 3947 . . . . . . . . . . . 12 ({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } ≠ ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
3427, 33sylbir 235 . . . . . . . . . . 11 (¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
3534nnnn0d 12510 . . . . . . . . . 10 (¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅ → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ0)
3635adantl 481 . . . . . . . . 9 ((⊤ ∧ ¬ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅) → inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ0)
3726, 36ifclda 4527 . . . . . . . 8 (⊤ → if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )) ∈ ℕ0)
3837mptru 1547 . . . . . . 7 if({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }, ℝ, < )) ∈ ℕ0
3924, 38eqeltri 2825 . . . . . 6 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) ∈ ℕ0
4039rgenw 3049 . . . . 5 𝑥𝑋 {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) ∈ ℕ0
4117, 18, 40mptexw 7934 . . . 4 (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) ∈ V
4215, 16, 41fvmpt 6971 . . 3 (𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
43 fvprc 6853 . . . 4 𝐺 ∈ V → (od‘𝐺) = ∅)
44 fvprc 6853 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
453, 44eqtrid 2777 . . . . . 6 𝐺 ∈ V → 𝑋 = ∅)
4645mpteq1d 5200 . . . . 5 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
47 mpt0 6663 . . . . 5 (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅
4846, 47eqtrdi 2781 . . . 4 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅)
4943, 48eqtr4d 2768 . . 3 𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
5042, 49pm2.61i 182 . 2 (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
511, 50eqtri 2753 1 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  csb 3865  wss 3917  c0 4299  ifcif 4491  cmpt 5191  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  1c1 11076   < clt 11215  cn 12193  0cn0 12449  cuz 12800  Basecbs 17186  0gc0g 17409  .gcmg 19006  odcod 19461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-od 19465
This theorem is referenced by:  odval  19471  odf  19474
  Copyright terms: Public domain W3C validator