Detailed syntax breakdown of Definition df-smblfn
| Step | Hyp | Ref
| Expression |
| 1 | | csmblfn 46710 |
. 2
class
SMblFn |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | csalg 46323 |
. . 3
class
SAlg |
| 4 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 5 | 4 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 6 | 5 | ccnv 5684 |
. . . . . . 7
class ◡𝑓 |
| 7 | | cmnf 11293 |
. . . . . . . 8
class
-∞ |
| 8 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 9 | 8 | cv 1539 |
. . . . . . . 8
class 𝑎 |
| 10 | | cioo 13387 |
. . . . . . . 8
class
(,) |
| 11 | 7, 9, 10 | co 7431 |
. . . . . . 7
class
(-∞(,)𝑎) |
| 12 | 6, 11 | cima 5688 |
. . . . . 6
class (◡𝑓 “ (-∞(,)𝑎)) |
| 13 | 2 | cv 1539 |
. . . . . . 7
class 𝑠 |
| 14 | 5 | cdm 5685 |
. . . . . . 7
class dom 𝑓 |
| 15 | | crest 17465 |
. . . . . . 7
class
↾t |
| 16 | 13, 14, 15 | co 7431 |
. . . . . 6
class (𝑠 ↾t dom 𝑓) |
| 17 | 12, 16 | wcel 2108 |
. . . . 5
wff (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓) |
| 18 | | cr 11154 |
. . . . 5
class
ℝ |
| 19 | 17, 8, 18 | wral 3061 |
. . . 4
wff
∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓) |
| 20 | 13 | cuni 4907 |
. . . . 5
class ∪ 𝑠 |
| 21 | | cpm 8867 |
. . . . 5
class
↑pm |
| 22 | 18, 20, 21 | co 7431 |
. . . 4
class (ℝ
↑pm ∪ 𝑠) |
| 23 | 19, 4, 22 | crab 3436 |
. . 3
class {𝑓 ∈ (ℝ
↑pm ∪ 𝑠) ∣ ∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)} |
| 24 | 2, 3, 23 | cmpt 5225 |
. 2
class (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ
↑pm ∪ 𝑠) ∣ ∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)}) |
| 25 | 1, 24 | wceq 1540 |
1
wff SMblFn =
(𝑠 ∈ SAlg ↦
{𝑓 ∈ (ℝ
↑pm ∪ 𝑠) ∣ ∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)}) |