Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmflem Structured version   Visualization version   GIF version

Theorem issmflem 46723
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmflem.s (𝜑𝑆 ∈ SAlg)
issmflem.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmflem (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥   𝜑,𝑎,𝑥

Proof of Theorem issmflem
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
2 df-smblfn 46692 . . . . . . . . 9 SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
3 unieq 4899 . . . . . . . . . . . 12 (𝑠 = 𝑆 𝑠 = 𝑆)
43oveq2d 7426 . . . . . . . . . . 11 (𝑠 = 𝑆 → (ℝ ↑pm 𝑠) = (ℝ ↑pm 𝑆))
54rabeqdv 3436 . . . . . . . . . 10 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
6 oveq1 7417 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑠t dom 𝑓) = (𝑆t dom 𝑓))
76eleq2d 2821 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓) ↔ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)))
87ralbidv 3164 . . . . . . . . . . 11 (𝑠 = 𝑆 → (∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)))
98rabbidv 3428 . . . . . . . . . 10 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
105, 9eqtrd 2771 . . . . . . . . 9 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
11 issmflem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
12 ovex 7443 . . . . . . . . . . 11 (ℝ ↑pm 𝑆) ∈ V
1312rabex 5314 . . . . . . . . . 10 {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ∈ V
1413a1i 11 . . . . . . . . 9 (𝜑 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ∈ V)
152, 10, 11, 14fvmptd3 7014 . . . . . . . 8 (𝜑 → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
1615adantr 480 . . . . . . 7 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
171, 16eleqtrd 2837 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
18 elrabi 3671 . . . . . 6 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} → 𝐹 ∈ (ℝ ↑pm 𝑆))
1917, 18syl 17 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
20 issmflem.d . . . . . . 7 𝐷 = dom 𝐹
21 elpmi2 45216 . . . . . . 7 (𝐹 ∈ (ℝ ↑pm 𝑆) → dom 𝐹 𝑆)
2220, 21eqsstrid 4002 . . . . . 6 (𝐹 ∈ (ℝ ↑pm 𝑆) → 𝐷 𝑆)
2322adantl 481 . . . . 5 ((𝜑𝐹 ∈ (ℝ ↑pm 𝑆)) → 𝐷 𝑆)
2419, 23syldan 591 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
25 elpmi 8865 . . . . . . 7 (𝐹 ∈ (ℝ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 𝑆))
2619, 25syl 17 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 𝑆))
2726simpld 494 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:dom 𝐹⟶ℝ)
2820feq2i 6703 . . . . . 6 (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ)
2928a1i 11 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ))
3027, 29mpbird 257 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
31 cnveq 5858 . . . . . . . . . . . . . 14 (𝑓 = 𝐹𝑓 = 𝐹)
3231imaeq1d 6051 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓 “ (-∞(,)𝑎)) = (𝐹 “ (-∞(,)𝑎)))
33 dmeq 5888 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
3433oveq2d 7426 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑆t dom 𝑓) = (𝑆t dom 𝐹))
3532, 34eleq12d 2829 . . . . . . . . . . . 12 (𝑓 = 𝐹 → ((𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3635ralbidv 3164 . . . . . . . . . . 11 (𝑓 = 𝐹 → (∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3736elrab 3676 . . . . . . . . . 10 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ↔ (𝐹 ∈ (ℝ ↑pm 𝑆) ∧ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3837simprbi 496 . . . . . . . . 9 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
3917, 38syl 17 . . . . . . . 8 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4039adantr 480 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
41 simpr 484 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
42 rspa 3235 . . . . . . 7 ((∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4340, 41, 42syl2anc 584 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4430adantr 480 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
45 simpl 482 . . . . . . . . . 10 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
46 simpr 484 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4746rexrd 11290 . . . . . . . . . 10 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
4845, 47preimaioomnf 46715 . . . . . . . . 9 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎})
4948eqcomd 2742 . . . . . . . 8 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = (𝐹 “ (-∞(,)𝑎)))
5044, 41, 49syl2anc 584 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = (𝐹 “ (-∞(,)𝑎)))
5120oveq2i 7421 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t dom 𝐹)
5251a1i 11 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (𝑆t 𝐷) = (𝑆t dom 𝐹))
5350, 52eleq12d 2829 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
5443, 53mpbird 257 . . . . 5 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
5554ralrimiva 3133 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
5624, 30, 553jca 1128 . . 3 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
5756ex 412 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
58 reex 11225 . . . . . . . . 9 ℝ ∈ V
5958a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → ℝ ∈ V)
6011uniexd 7741 . . . . . . . . 9 (𝜑 𝑆 ∈ V)
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝑆 ∈ V)
62 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹:𝐷⟶ℝ)
63 fssxp 6738 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℝ → 𝐹 ⊆ (𝐷 × ℝ))
6463adantl 481 . . . . . . . . . . 11 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → 𝐹 ⊆ (𝐷 × ℝ))
65 xpss1 5678 . . . . . . . . . . . 12 (𝐷 𝑆 → (𝐷 × ℝ) ⊆ ( 𝑆 × ℝ))
6665adantr 480 . . . . . . . . . . 11 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → (𝐷 × ℝ) ⊆ ( 𝑆 × ℝ))
6764, 66sstrd 3974 . . . . . . . . . 10 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → 𝐹 ⊆ ( 𝑆 × ℝ))
6867adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹 ⊆ ( 𝑆 × ℝ))
69 dmss 5887 . . . . . . . . . . . 12 (𝐹 ⊆ ( 𝑆 × ℝ) → dom 𝐹 ⊆ dom ( 𝑆 × ℝ))
70 dmxpss 6165 . . . . . . . . . . . . 13 dom ( 𝑆 × ℝ) ⊆ 𝑆
7170a1i 11 . . . . . . . . . . . 12 (𝐹 ⊆ ( 𝑆 × ℝ) → dom ( 𝑆 × ℝ) ⊆ 𝑆)
7269, 71sstrd 3974 . . . . . . . . . . 11 (𝐹 ⊆ ( 𝑆 × ℝ) → dom 𝐹 𝑆)
7372adantl 481 . . . . . . . . . 10 ((𝜑𝐹 ⊆ ( 𝑆 × ℝ)) → dom 𝐹 𝑆)
7420, 73eqsstrid 4002 . . . . . . . . 9 ((𝜑𝐹 ⊆ ( 𝑆 × ℝ)) → 𝐷 𝑆)
7568, 74syldan 591 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐷 𝑆)
76 elpm2r 8864 . . . . . . . 8 (((ℝ ∈ V ∧ 𝑆 ∈ V) ∧ (𝐹:𝐷⟶ℝ ∧ 𝐷 𝑆)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
7759, 61, 62, 75, 76syl22anc 838 . . . . . . 7 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
78773adantr3 1172 . . . . . 6 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (ℝ ↑pm 𝑆))
7920a1i 11 . . . . . . . . . . . . 13 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐷 = dom 𝐹)
8079oveq2d 7426 . . . . . . . . . . . 12 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (𝑆t 𝐷) = (𝑆t dom 𝐹))
8149, 80eleq12d 2829 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8281ralbidva 3162 . . . . . . . . . 10 (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8382biimpd 229 . . . . . . . . 9 (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8483imp 406 . . . . . . . 8 ((𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
8584adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
86853adantr1 1170 . . . . . 6 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
8778, 86jca 511 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → (𝐹 ∈ (ℝ ↑pm 𝑆) ∧ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8887, 37sylibr 234 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
8915eqcomd 2742 . . . . 5 (𝜑 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} = (SMblFn‘𝑆))
9089adantr 480 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} = (SMblFn‘𝑆))
9188, 90eleqtrd 2837 . . 3 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
9291ex 412 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
9357, 92impbid 212 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  wss 3931   cuni 4888   class class class wbr 5124   × cxp 5657  ccnv 5658  dom cdm 5659  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  pm cpm 8846  cr 11133  -∞cmnf 11272   < clt 11274  (,)cioo 13367  t crest 17439  SAlgcsalg 46304  SMblFncsmblfn 46691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-ioo 13371  df-ico 13373  df-smblfn 46692
This theorem is referenced by:  issmf  46724
  Copyright terms: Public domain W3C validator