Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmflem Structured version   Visualization version   GIF version

Theorem issmflem 42873
 Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmflem.s (𝜑𝑆 ∈ SAlg)
issmflem.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmflem (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥   𝜑,𝑎,𝑥

Proof of Theorem issmflem
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
2 df-smblfn 42847 . . . . . . . . 9 SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
3 unieq 4844 . . . . . . . . . . . 12 (𝑠 = 𝑆 𝑠 = 𝑆)
43oveq2d 7167 . . . . . . . . . . 11 (𝑠 = 𝑆 → (ℝ ↑pm 𝑠) = (ℝ ↑pm 𝑆))
54rabeqdv 3489 . . . . . . . . . 10 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
6 oveq1 7158 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑠t dom 𝑓) = (𝑆t dom 𝑓))
76eleq2d 2902 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓) ↔ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)))
87ralbidv 3201 . . . . . . . . . . 11 (𝑠 = 𝑆 → (∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)))
98rabbidv 3485 . . . . . . . . . 10 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
105, 9eqtrd 2860 . . . . . . . . 9 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
11 issmflem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
12 ovex 7184 . . . . . . . . . . 11 (ℝ ↑pm 𝑆) ∈ V
1312rabex 5231 . . . . . . . . . 10 {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ∈ V
1413a1i 11 . . . . . . . . 9 (𝜑 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ∈ V)
152, 10, 11, 14fvmptd3 6786 . . . . . . . 8 (𝜑 → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
1615adantr 481 . . . . . . 7 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
171, 16eleqtrd 2919 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
18 elrabi 3678 . . . . . 6 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} → 𝐹 ∈ (ℝ ↑pm 𝑆))
1917, 18syl 17 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
20 issmflem.d . . . . . . 7 𝐷 = dom 𝐹
21 elpmi2 41357 . . . . . . 7 (𝐹 ∈ (ℝ ↑pm 𝑆) → dom 𝐹 𝑆)
2220, 21eqsstrid 4018 . . . . . 6 (𝐹 ∈ (ℝ ↑pm 𝑆) → 𝐷 𝑆)
2322adantl 482 . . . . 5 ((𝜑𝐹 ∈ (ℝ ↑pm 𝑆)) → 𝐷 𝑆)
2419, 23syldan 591 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
25 elpmi 8418 . . . . . . 7 (𝐹 ∈ (ℝ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 𝑆))
2619, 25syl 17 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 𝑆))
2726simpld 495 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:dom 𝐹⟶ℝ)
2820feq2i 6502 . . . . . 6 (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ)
2928a1i 11 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ))
3027, 29mpbird 258 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
31 cnveq 5742 . . . . . . . . . . . . . 14 (𝑓 = 𝐹𝑓 = 𝐹)
3231imaeq1d 5925 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓 “ (-∞(,)𝑎)) = (𝐹 “ (-∞(,)𝑎)))
33 dmeq 5770 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
3433oveq2d 7167 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑆t dom 𝑓) = (𝑆t dom 𝐹))
3532, 34eleq12d 2911 . . . . . . . . . . . 12 (𝑓 = 𝐹 → ((𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3635ralbidv 3201 . . . . . . . . . . 11 (𝑓 = 𝐹 → (∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3736elrab 3683 . . . . . . . . . 10 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ↔ (𝐹 ∈ (ℝ ↑pm 𝑆) ∧ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3837simprbi 497 . . . . . . . . 9 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
3917, 38syl 17 . . . . . . . 8 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4039adantr 481 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
41 simpr 485 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
42 rspa 3210 . . . . . . 7 ((∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4340, 41, 42syl2anc 584 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4430adantr 481 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
45 simpl 483 . . . . . . . . . 10 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
46 simpr 485 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4746rexrd 10683 . . . . . . . . . 10 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
4845, 47preimaioomnf 42866 . . . . . . . . 9 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎})
4948eqcomd 2831 . . . . . . . 8 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = (𝐹 “ (-∞(,)𝑎)))
5044, 41, 49syl2anc 584 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = (𝐹 “ (-∞(,)𝑎)))
5120oveq2i 7162 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t dom 𝐹)
5251a1i 11 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (𝑆t 𝐷) = (𝑆t dom 𝐹))
5350, 52eleq12d 2911 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
5443, 53mpbird 258 . . . . 5 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
5554ralrimiva 3186 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
5624, 30, 553jca 1122 . . 3 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
5756ex 413 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
58 reex 10620 . . . . . . . . 9 ℝ ∈ V
5958a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → ℝ ∈ V)
6011uniexd 41235 . . . . . . . . 9 (𝜑 𝑆 ∈ V)
6160adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝑆 ∈ V)
62 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹:𝐷⟶ℝ)
63 fssxp 6530 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℝ → 𝐹 ⊆ (𝐷 × ℝ))
6463adantl 482 . . . . . . . . . . 11 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → 𝐹 ⊆ (𝐷 × ℝ))
65 xpss1 5572 . . . . . . . . . . . 12 (𝐷 𝑆 → (𝐷 × ℝ) ⊆ ( 𝑆 × ℝ))
6665adantr 481 . . . . . . . . . . 11 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → (𝐷 × ℝ) ⊆ ( 𝑆 × ℝ))
6764, 66sstrd 3980 . . . . . . . . . 10 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → 𝐹 ⊆ ( 𝑆 × ℝ))
6867adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹 ⊆ ( 𝑆 × ℝ))
69 dmss 5769 . . . . . . . . . . . 12 (𝐹 ⊆ ( 𝑆 × ℝ) → dom 𝐹 ⊆ dom ( 𝑆 × ℝ))
70 dmxpss 6025 . . . . . . . . . . . . 13 dom ( 𝑆 × ℝ) ⊆ 𝑆
7170a1i 11 . . . . . . . . . . . 12 (𝐹 ⊆ ( 𝑆 × ℝ) → dom ( 𝑆 × ℝ) ⊆ 𝑆)
7269, 71sstrd 3980 . . . . . . . . . . 11 (𝐹 ⊆ ( 𝑆 × ℝ) → dom 𝐹 𝑆)
7372adantl 482 . . . . . . . . . 10 ((𝜑𝐹 ⊆ ( 𝑆 × ℝ)) → dom 𝐹 𝑆)
7420, 73eqsstrid 4018 . . . . . . . . 9 ((𝜑𝐹 ⊆ ( 𝑆 × ℝ)) → 𝐷 𝑆)
7568, 74syldan 591 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐷 𝑆)
76 elpm2r 8417 . . . . . . . 8 (((ℝ ∈ V ∧ 𝑆 ∈ V) ∧ (𝐹:𝐷⟶ℝ ∧ 𝐷 𝑆)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
7759, 61, 62, 75, 76syl22anc 836 . . . . . . 7 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
78773adantr3 1165 . . . . . 6 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (ℝ ↑pm 𝑆))
7920a1i 11 . . . . . . . . . . . . 13 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐷 = dom 𝐹)
8079oveq2d 7167 . . . . . . . . . . . 12 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (𝑆t 𝐷) = (𝑆t dom 𝐹))
8149, 80eleq12d 2911 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8281ralbidva 3200 . . . . . . . . . 10 (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8382biimpd 230 . . . . . . . . 9 (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8483imp 407 . . . . . . . 8 ((𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
8584adantl 482 . . . . . . 7 ((𝜑 ∧ (𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
86853adantr1 1163 . . . . . 6 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
8778, 86jca 512 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → (𝐹 ∈ (ℝ ↑pm 𝑆) ∧ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8887, 37sylibr 235 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
8915eqcomd 2831 . . . . 5 (𝜑 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} = (SMblFn‘𝑆))
9089adantr 481 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} = (SMblFn‘𝑆))
9188, 90eleqtrd 2919 . . 3 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
9291ex 413 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
9357, 92impbid 213 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ∀wral 3142  {crab 3146  Vcvv 3499   ⊆ wss 3939  ∪ cuni 4836   class class class wbr 5062   × cxp 5551  ◡ccnv 5552  dom cdm 5553   “ cima 5556  ⟶wf 6347  ‘cfv 6351  (class class class)co 7151   ↑pm cpm 8400  ℝcr 10528  -∞cmnf 10665   < clt 10667  (,)cioo 12731   ↾t crest 16687  SAlgcsalg 42462  SMblFncsmblfn 42846 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-er 8282  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-ioo 12735  df-ico 12737  df-smblfn 42847 This theorem is referenced by:  issmf  42874
 Copyright terms: Public domain W3C validator