Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmflem Structured version   Visualization version   GIF version

Theorem issmflem 44150
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmflem.s (𝜑𝑆 ∈ SAlg)
issmflem.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmflem (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥   𝜑,𝑎,𝑥

Proof of Theorem issmflem
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
2 df-smblfn 44124 . . . . . . . . 9 SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
3 unieq 4847 . . . . . . . . . . . 12 (𝑠 = 𝑆 𝑠 = 𝑆)
43oveq2d 7271 . . . . . . . . . . 11 (𝑠 = 𝑆 → (ℝ ↑pm 𝑠) = (ℝ ↑pm 𝑆))
54rabeqdv 3409 . . . . . . . . . 10 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
6 oveq1 7262 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑠t dom 𝑓) = (𝑆t dom 𝑓))
76eleq2d 2824 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓) ↔ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)))
87ralbidv 3120 . . . . . . . . . . 11 (𝑠 = 𝑆 → (∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)))
98rabbidv 3404 . . . . . . . . . 10 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
105, 9eqtrd 2778 . . . . . . . . 9 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
11 issmflem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
12 ovex 7288 . . . . . . . . . . 11 (ℝ ↑pm 𝑆) ∈ V
1312rabex 5251 . . . . . . . . . 10 {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ∈ V
1413a1i 11 . . . . . . . . 9 (𝜑 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ∈ V)
152, 10, 11, 14fvmptd3 6880 . . . . . . . 8 (𝜑 → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
1615adantr 480 . . . . . . 7 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
171, 16eleqtrd 2841 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
18 elrabi 3611 . . . . . 6 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} → 𝐹 ∈ (ℝ ↑pm 𝑆))
1917, 18syl 17 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
20 issmflem.d . . . . . . 7 𝐷 = dom 𝐹
21 elpmi2 42653 . . . . . . 7 (𝐹 ∈ (ℝ ↑pm 𝑆) → dom 𝐹 𝑆)
2220, 21eqsstrid 3965 . . . . . 6 (𝐹 ∈ (ℝ ↑pm 𝑆) → 𝐷 𝑆)
2322adantl 481 . . . . 5 ((𝜑𝐹 ∈ (ℝ ↑pm 𝑆)) → 𝐷 𝑆)
2419, 23syldan 590 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
25 elpmi 8592 . . . . . . 7 (𝐹 ∈ (ℝ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 𝑆))
2619, 25syl 17 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 𝑆))
2726simpld 494 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:dom 𝐹⟶ℝ)
2820feq2i 6576 . . . . . 6 (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ)
2928a1i 11 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ))
3027, 29mpbird 256 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
31 cnveq 5771 . . . . . . . . . . . . . 14 (𝑓 = 𝐹𝑓 = 𝐹)
3231imaeq1d 5957 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓 “ (-∞(,)𝑎)) = (𝐹 “ (-∞(,)𝑎)))
33 dmeq 5801 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
3433oveq2d 7271 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑆t dom 𝑓) = (𝑆t dom 𝐹))
3532, 34eleq12d 2833 . . . . . . . . . . . 12 (𝑓 = 𝐹 → ((𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3635ralbidv 3120 . . . . . . . . . . 11 (𝑓 = 𝐹 → (∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3736elrab 3617 . . . . . . . . . 10 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ↔ (𝐹 ∈ (ℝ ↑pm 𝑆) ∧ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3837simprbi 496 . . . . . . . . 9 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
3917, 38syl 17 . . . . . . . 8 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4039adantr 480 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
41 simpr 484 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
42 rspa 3130 . . . . . . 7 ((∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4340, 41, 42syl2anc 583 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4430adantr 480 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
45 simpl 482 . . . . . . . . . 10 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
46 simpr 484 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4746rexrd 10956 . . . . . . . . . 10 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
4845, 47preimaioomnf 44143 . . . . . . . . 9 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎})
4948eqcomd 2744 . . . . . . . 8 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = (𝐹 “ (-∞(,)𝑎)))
5044, 41, 49syl2anc 583 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = (𝐹 “ (-∞(,)𝑎)))
5120oveq2i 7266 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t dom 𝐹)
5251a1i 11 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (𝑆t 𝐷) = (𝑆t dom 𝐹))
5350, 52eleq12d 2833 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
5443, 53mpbird 256 . . . . 5 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
5554ralrimiva 3107 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
5624, 30, 553jca 1126 . . 3 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
5756ex 412 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
58 reex 10893 . . . . . . . . 9 ℝ ∈ V
5958a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → ℝ ∈ V)
6011uniexd 7573 . . . . . . . . 9 (𝜑 𝑆 ∈ V)
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝑆 ∈ V)
62 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹:𝐷⟶ℝ)
63 fssxp 6612 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℝ → 𝐹 ⊆ (𝐷 × ℝ))
6463adantl 481 . . . . . . . . . . 11 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → 𝐹 ⊆ (𝐷 × ℝ))
65 xpss1 5599 . . . . . . . . . . . 12 (𝐷 𝑆 → (𝐷 × ℝ) ⊆ ( 𝑆 × ℝ))
6665adantr 480 . . . . . . . . . . 11 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → (𝐷 × ℝ) ⊆ ( 𝑆 × ℝ))
6764, 66sstrd 3927 . . . . . . . . . 10 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → 𝐹 ⊆ ( 𝑆 × ℝ))
6867adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹 ⊆ ( 𝑆 × ℝ))
69 dmss 5800 . . . . . . . . . . . 12 (𝐹 ⊆ ( 𝑆 × ℝ) → dom 𝐹 ⊆ dom ( 𝑆 × ℝ))
70 dmxpss 6063 . . . . . . . . . . . . 13 dom ( 𝑆 × ℝ) ⊆ 𝑆
7170a1i 11 . . . . . . . . . . . 12 (𝐹 ⊆ ( 𝑆 × ℝ) → dom ( 𝑆 × ℝ) ⊆ 𝑆)
7269, 71sstrd 3927 . . . . . . . . . . 11 (𝐹 ⊆ ( 𝑆 × ℝ) → dom 𝐹 𝑆)
7372adantl 481 . . . . . . . . . 10 ((𝜑𝐹 ⊆ ( 𝑆 × ℝ)) → dom 𝐹 𝑆)
7420, 73eqsstrid 3965 . . . . . . . . 9 ((𝜑𝐹 ⊆ ( 𝑆 × ℝ)) → 𝐷 𝑆)
7568, 74syldan 590 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐷 𝑆)
76 elpm2r 8591 . . . . . . . 8 (((ℝ ∈ V ∧ 𝑆 ∈ V) ∧ (𝐹:𝐷⟶ℝ ∧ 𝐷 𝑆)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
7759, 61, 62, 75, 76syl22anc 835 . . . . . . 7 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
78773adantr3 1169 . . . . . 6 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (ℝ ↑pm 𝑆))
7920a1i 11 . . . . . . . . . . . . 13 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐷 = dom 𝐹)
8079oveq2d 7271 . . . . . . . . . . . 12 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (𝑆t 𝐷) = (𝑆t dom 𝐹))
8149, 80eleq12d 2833 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8281ralbidva 3119 . . . . . . . . . 10 (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8382biimpd 228 . . . . . . . . 9 (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8483imp 406 . . . . . . . 8 ((𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
8584adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
86853adantr1 1167 . . . . . 6 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
8778, 86jca 511 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → (𝐹 ∈ (ℝ ↑pm 𝑆) ∧ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8887, 37sylibr 233 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
8915eqcomd 2744 . . . . 5 (𝜑 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} = (SMblFn‘𝑆))
9089adantr 480 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} = (SMblFn‘𝑆))
9188, 90eleqtrd 2841 . . 3 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
9291ex 412 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
9357, 92impbid 211 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883   cuni 4836   class class class wbr 5070   × cxp 5578  ccnv 5579  dom cdm 5580  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  cr 10801  -∞cmnf 10938   < clt 10940  (,)cioo 13008  t crest 17048  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioo 13012  df-ico 13014  df-smblfn 44124
This theorem is referenced by:  issmf  44151
  Copyright terms: Public domain W3C validator