Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmflem Structured version   Visualization version   GIF version

Theorem issmflem 41576
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmflem.s (𝜑𝑆 ∈ SAlg)
issmflem.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmflem (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎,𝑥   𝐹,𝑎,𝑥   𝑆,𝑎,𝑥   𝜑,𝑎,𝑥

Proof of Theorem issmflem
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . 7 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆))
2 df-smblfn 41550 . . . . . . . . . 10 SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
32a1i 11 . . . . . . . . 9 (𝜑 → SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)}))
4 unieq 4602 . . . . . . . . . . . . 13 (𝑠 = 𝑆 𝑠 = 𝑆)
54oveq2d 6858 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (ℝ ↑pm 𝑠) = (ℝ ↑pm 𝑆))
65rabeqd 39927 . . . . . . . . . . 11 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
7 oveq1 6849 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → (𝑠t dom 𝑓) = (𝑆t dom 𝑓))
87eleq2d 2830 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → ((𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓) ↔ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)))
98ralbidv 3133 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)))
109rabbidv 3338 . . . . . . . . . . 11 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
116, 10eqtrd 2799 . . . . . . . . . 10 (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
1211adantl 473 . . . . . . . . 9 ((𝜑𝑠 = 𝑆) → {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
13 issmflem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
14 ovex 6874 . . . . . . . . . . 11 (ℝ ↑pm 𝑆) ∈ V
1514rabex 4973 . . . . . . . . . 10 {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ∈ V
1615a1i 11 . . . . . . . . 9 (𝜑 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ∈ V)
173, 12, 13, 16fvmptd 6477 . . . . . . . 8 (𝜑 → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
1817adantr 472 . . . . . . 7 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
191, 18eleqtrd 2846 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
20 elrabi 3514 . . . . . 6 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} → 𝐹 ∈ (ℝ ↑pm 𝑆))
2119, 20syl 17 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
22 issmflem.d . . . . . . 7 𝐷 = dom 𝐹
23 elpmi2 40063 . . . . . . 7 (𝐹 ∈ (ℝ ↑pm 𝑆) → dom 𝐹 𝑆)
2422, 23syl5eqss 3809 . . . . . 6 (𝐹 ∈ (ℝ ↑pm 𝑆) → 𝐷 𝑆)
2524adantl 473 . . . . 5 ((𝜑𝐹 ∈ (ℝ ↑pm 𝑆)) → 𝐷 𝑆)
2621, 25syldan 585 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 𝑆)
27 elpmi 8079 . . . . . . 7 (𝐹 ∈ (ℝ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 𝑆))
2821, 27syl 17 . . . . . 6 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 𝑆))
2928simpld 488 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:dom 𝐹⟶ℝ)
3022feq2i 6215 . . . . . 6 (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ)
3130a1i 11 . . . . 5 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ))
3229, 31mpbird 248 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ)
33 cnveq 5464 . . . . . . . . . . . . . 14 (𝑓 = 𝐹𝑓 = 𝐹)
3433imaeq1d 5647 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓 “ (-∞(,)𝑎)) = (𝐹 “ (-∞(,)𝑎)))
35 dmeq 5492 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
3635oveq2d 6858 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑆t dom 𝑓) = (𝑆t dom 𝐹))
3734, 36eleq12d 2838 . . . . . . . . . . . 12 (𝑓 = 𝐹 → ((𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3837ralbidv 3133 . . . . . . . . . . 11 (𝑓 = 𝐹 → (∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
3938elrab 3519 . . . . . . . . . 10 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} ↔ (𝐹 ∈ (ℝ ↑pm 𝑆) ∧ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
4039simprbi 490 . . . . . . . . 9 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4119, 40syl 17 . . . . . . . 8 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4241adantr 472 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
43 simpr 477 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
44 rspa 3077 . . . . . . 7 ((∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4542, 43, 44syl2anc 579 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4632adantr 472 . . . . . . . 8 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
47 simpl 474 . . . . . . . . . 10 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
48 simpr 477 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4948rexrd 10343 . . . . . . . . . 10 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
5047, 49preimaioomnf 41569 . . . . . . . . 9 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎})
5150eqcomd 2771 . . . . . . . 8 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = (𝐹 “ (-∞(,)𝑎)))
5246, 43, 51syl2anc 579 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = (𝐹 “ (-∞(,)𝑎)))
5322oveq2i 6853 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t dom 𝐹)
5453a1i 11 . . . . . . 7 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (𝑆t 𝐷) = (𝑆t dom 𝐹))
5552, 54eleq12d 2838 . . . . . 6 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
5645, 55mpbird 248 . . . . 5 (((𝜑𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
5756ralrimiva 3113 . . . 4 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
5826, 32, 573jca 1158 . . 3 ((𝜑𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
5958ex 401 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
60 reex 10280 . . . . . . . . 9 ℝ ∈ V
6160a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → ℝ ∈ V)
6213uniexd 39932 . . . . . . . . 9 (𝜑 𝑆 ∈ V)
6362adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝑆 ∈ V)
64 simprr 789 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹:𝐷⟶ℝ)
65 fssxp 6242 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℝ → 𝐹 ⊆ (𝐷 × ℝ))
6665adantl 473 . . . . . . . . . . 11 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → 𝐹 ⊆ (𝐷 × ℝ))
67 xpss1 5296 . . . . . . . . . . . 12 (𝐷 𝑆 → (𝐷 × ℝ) ⊆ ( 𝑆 × ℝ))
6867adantr 472 . . . . . . . . . . 11 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → (𝐷 × ℝ) ⊆ ( 𝑆 × ℝ))
6966, 68sstrd 3771 . . . . . . . . . 10 ((𝐷 𝑆𝐹:𝐷⟶ℝ) → 𝐹 ⊆ ( 𝑆 × ℝ))
7069adantl 473 . . . . . . . . 9 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹 ⊆ ( 𝑆 × ℝ))
71 dmss 5491 . . . . . . . . . . . 12 (𝐹 ⊆ ( 𝑆 × ℝ) → dom 𝐹 ⊆ dom ( 𝑆 × ℝ))
72 dmxpss 5748 . . . . . . . . . . . . 13 dom ( 𝑆 × ℝ) ⊆ 𝑆
7372a1i 11 . . . . . . . . . . . 12 (𝐹 ⊆ ( 𝑆 × ℝ) → dom ( 𝑆 × ℝ) ⊆ 𝑆)
7471, 73sstrd 3771 . . . . . . . . . . 11 (𝐹 ⊆ ( 𝑆 × ℝ) → dom 𝐹 𝑆)
7574adantl 473 . . . . . . . . . 10 ((𝜑𝐹 ⊆ ( 𝑆 × ℝ)) → dom 𝐹 𝑆)
7622, 75syl5eqss 3809 . . . . . . . . 9 ((𝜑𝐹 ⊆ ( 𝑆 × ℝ)) → 𝐷 𝑆)
7770, 76syldan 585 . . . . . . . 8 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐷 𝑆)
78 elpm2r 8078 . . . . . . . 8 (((ℝ ∈ V ∧ 𝑆 ∈ V) ∧ (𝐹:𝐷⟶ℝ ∧ 𝐷 𝑆)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
7961, 63, 64, 77, 78syl22anc 867 . . . . . . 7 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ)) → 𝐹 ∈ (ℝ ↑pm 𝑆))
80793adantr3 1212 . . . . . 6 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (ℝ ↑pm 𝑆))
8122a1i 11 . . . . . . . . . . . . 13 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐷 = dom 𝐹)
8281oveq2d 6858 . . . . . . . . . . . 12 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (𝑆t 𝐷) = (𝑆t dom 𝐹))
8351, 82eleq12d 2838 . . . . . . . . . . 11 ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8483ralbidva 3132 . . . . . . . . . 10 (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8584biimpd 220 . . . . . . . . 9 (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
8685imp 395 . . . . . . . 8 ((𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
8786adantl 473 . . . . . . 7 ((𝜑 ∧ (𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
88873adantr1 1210 . . . . . 6 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
8980, 88jca 507 . . . . 5 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → (𝐹 ∈ (ℝ ↑pm 𝑆) ∧ ∀𝑎 ∈ ℝ (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹)))
9089, 39sylibr 225 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)})
9117eqcomd 2771 . . . . 5 (𝜑 → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} = (SMblFn‘𝑆))
9291adantr 472 . . . 4 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → {𝑓 ∈ (ℝ ↑pm 𝑆) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝑓)} = (SMblFn‘𝑆))
9390, 92eleqtrd 2846 . . 3 ((𝜑 ∧ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆))
9493ex 401 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆)))
9559, 94impbid 203 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  {crab 3059  Vcvv 3350  wss 3732   cuni 4594   class class class wbr 4809  cmpt 4888   × cxp 5275  ccnv 5276  dom cdm 5277  cima 5280  wf 6064  cfv 6068  (class class class)co 6842  pm cpm 8061  cr 10188  -∞cmnf 10326   < clt 10328  (,)cioo 12377  t crest 16347  SAlgcsalg 41165  SMblFncsmblfn 41549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-pre-lttri 10263  ax-pre-lttrn 10264
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-ioo 12381  df-ico 12383  df-smblfn 41550
This theorem is referenced by:  issmf  41577
  Copyright terms: Public domain W3C validator