Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (SMblFn‘𝑆)) |
2 | | df-smblfn 44124 |
. . . . . . . . 9
⊢ SMblFn =
(𝑠 ∈ SAlg ↦
{𝑓 ∈ (ℝ
↑pm ∪ 𝑠) ∣ ∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)}) |
3 | | unieq 4847 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪
𝑆) |
4 | 3 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (ℝ ↑pm ∪ 𝑠) =
(ℝ ↑pm ∪ 𝑆)) |
5 | 4 | rabeqdv 3409 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm ∪ 𝑠)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)}) |
6 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑆 → (𝑠 ↾t dom 𝑓) = (𝑆 ↾t dom 𝑓)) |
7 | 6 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → ((◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓) ↔ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓))) |
8 | 7 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓))) |
9 | 8 | rabbidv 3404 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)}) |
10 | 5, 9 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → {𝑓 ∈ (ℝ ↑pm ∪ 𝑠)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)} = {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)}) |
11 | | issmflem.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ SAlg) |
12 | | ovex 7288 |
. . . . . . . . . . 11
⊢ (ℝ
↑pm ∪ 𝑆) ∈ V |
13 | 12 | rabex 5251 |
. . . . . . . . . 10
⊢ {𝑓 ∈ (ℝ
↑pm ∪ 𝑆) ∣ ∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)} ∈ V |
14 | 13 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)} ∈ V) |
15 | 2, 10, 11, 14 | fvmptd3 6880 |
. . . . . . . 8
⊢ (𝜑 → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)}) |
16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → (SMblFn‘𝑆) = {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)}) |
17 | 1, 16 | eleqtrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)}) |
18 | | elrabi 3611 |
. . . . . 6
⊢ (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)} → 𝐹 ∈ (ℝ ↑pm ∪ 𝑆)) |
19 | 17, 18 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐹 ∈ (ℝ ↑pm ∪ 𝑆)) |
20 | | issmflem.d |
. . . . . . 7
⊢ 𝐷 = dom 𝐹 |
21 | | elpmi2 42653 |
. . . . . . 7
⊢ (𝐹 ∈ (ℝ
↑pm ∪ 𝑆) → dom 𝐹 ⊆ ∪ 𝑆) |
22 | 20, 21 | eqsstrid 3965 |
. . . . . 6
⊢ (𝐹 ∈ (ℝ
↑pm ∪ 𝑆) → 𝐷 ⊆ ∪ 𝑆) |
23 | 22 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ (ℝ ↑pm ∪ 𝑆))
→ 𝐷 ⊆ ∪ 𝑆) |
24 | 19, 23 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐷 ⊆ ∪ 𝑆) |
25 | | elpmi 8592 |
. . . . . . 7
⊢ (𝐹 ∈ (ℝ
↑pm ∪ 𝑆) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ∪ 𝑆)) |
26 | 19, 25 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ∪ 𝑆)) |
27 | 26 | simpld 494 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:dom 𝐹⟶ℝ) |
28 | 20 | feq2i 6576 |
. . . . . 6
⊢ (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ) |
29 | 28 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → (𝐹:𝐷⟶ℝ ↔ 𝐹:dom 𝐹⟶ℝ)) |
30 | 27, 29 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → 𝐹:𝐷⟶ℝ) |
31 | | cnveq 5771 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) |
32 | 31 | imaeq1d 5957 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (◡𝑓 “ (-∞(,)𝑎)) = (◡𝐹 “ (-∞(,)𝑎))) |
33 | | dmeq 5801 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
34 | 33 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑆 ↾t dom 𝑓) = (𝑆 ↾t dom 𝐹)) |
35 | 32, 34 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → ((◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓) ↔ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹))) |
36 | 35 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (∀𝑎 ∈ ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓) ↔ ∀𝑎 ∈ ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹))) |
37 | 36 | elrab 3617 |
. . . . . . . . . 10
⊢ (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)} ↔ (𝐹 ∈ (ℝ ↑pm ∪ 𝑆)
∧ ∀𝑎 ∈
ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹))) |
38 | 37 | simprbi 496 |
. . . . . . . . 9
⊢ (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)} → ∀𝑎 ∈ ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
39 | 17, 38 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
40 | 39 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ∀𝑎 ∈ ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
41 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) |
42 | | rspa 3130 |
. . . . . . 7
⊢
((∀𝑎 ∈
ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹) ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
43 | 40, 41, 42 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
44 | 30 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ) |
45 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ) |
46 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) |
47 | 46 | rexrd 10956 |
. . . . . . . . . 10
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
48 | 45, 47 | preimaioomnf 44143 |
. . . . . . . . 9
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎}) |
49 | 48 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} = (◡𝐹 “ (-∞(,)𝑎))) |
50 | 44, 41, 49 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} = (◡𝐹 “ (-∞(,)𝑎))) |
51 | 20 | oveq2i 7266 |
. . . . . . . 8
⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t dom 𝐹) |
52 | 51 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t 𝐷) = (𝑆 ↾t dom 𝐹)) |
53 | 50, 52 | eleq12d 2833 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹))) |
54 | 43, 53 | mpbird 256 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
55 | 54 | ralrimiva 3107 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
56 | 24, 30, 55 | 3jca 1126 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ (SMblFn‘𝑆)) → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
57 | 56 | ex 412 |
. 2
⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
58 | | reex 10893 |
. . . . . . . . 9
⊢ ℝ
∈ V |
59 | 58 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ)) → ℝ ∈
V) |
60 | 11 | uniexd 7573 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑆
∈ V) |
61 | 60 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ)) → ∪ 𝑆
∈ V) |
62 | | simprr 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ)) → 𝐹:𝐷⟶ℝ) |
63 | | fssxp 6612 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐷⟶ℝ → 𝐹 ⊆ (𝐷 × ℝ)) |
64 | 63 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐷 ⊆ ∪ 𝑆
∧ 𝐹:𝐷⟶ℝ) → 𝐹 ⊆ (𝐷 × ℝ)) |
65 | | xpss1 5599 |
. . . . . . . . . . . 12
⊢ (𝐷 ⊆ ∪ 𝑆
→ (𝐷 × ℝ)
⊆ (∪ 𝑆 × ℝ)) |
66 | 65 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐷 ⊆ ∪ 𝑆
∧ 𝐹:𝐷⟶ℝ) → (𝐷 × ℝ) ⊆ (∪ 𝑆
× ℝ)) |
67 | 64, 66 | sstrd 3927 |
. . . . . . . . . 10
⊢ ((𝐷 ⊆ ∪ 𝑆
∧ 𝐹:𝐷⟶ℝ) → 𝐹 ⊆ (∪ 𝑆 ×
ℝ)) |
68 | 67 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ)) → 𝐹 ⊆ (∪ 𝑆 ×
ℝ)) |
69 | | dmss 5800 |
. . . . . . . . . . . 12
⊢ (𝐹 ⊆ (∪ 𝑆
× ℝ) → dom 𝐹 ⊆ dom (∪
𝑆 ×
ℝ)) |
70 | | dmxpss 6063 |
. . . . . . . . . . . . 13
⊢ dom
(∪ 𝑆 × ℝ) ⊆ ∪ 𝑆 |
71 | 70 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐹 ⊆ (∪ 𝑆
× ℝ) → dom (∪ 𝑆 × ℝ) ⊆ ∪ 𝑆) |
72 | 69, 71 | sstrd 3927 |
. . . . . . . . . . 11
⊢ (𝐹 ⊆ (∪ 𝑆
× ℝ) → dom 𝐹 ⊆ ∪ 𝑆) |
73 | 72 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹 ⊆ (∪ 𝑆 × ℝ)) → dom
𝐹 ⊆ ∪ 𝑆) |
74 | 20, 73 | eqsstrid 3965 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹 ⊆ (∪ 𝑆 × ℝ)) → 𝐷 ⊆ ∪ 𝑆) |
75 | 68, 74 | syldan 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ)) → 𝐷 ⊆ ∪ 𝑆) |
76 | | elpm2r 8591 |
. . . . . . . 8
⊢
(((ℝ ∈ V ∧ ∪ 𝑆 ∈ V) ∧ (𝐹:𝐷⟶ℝ ∧ 𝐷 ⊆ ∪ 𝑆)) → 𝐹 ∈ (ℝ ↑pm ∪ 𝑆)) |
77 | 59, 61, 62, 75, 76 | syl22anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ)) → 𝐹 ∈ (ℝ ↑pm ∪ 𝑆)) |
78 | 77 | 3adantr3 1169 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) → 𝐹 ∈ (ℝ ↑pm ∪ 𝑆)) |
79 | 20 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → 𝐷 = dom 𝐹) |
80 | 79 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t 𝐷) = (𝑆 ↾t dom 𝐹)) |
81 | 49, 80 | eleq12d 2833 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹))) |
82 | 81 | ralbidva 3119 |
. . . . . . . . . 10
⊢ (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ ∀𝑎 ∈ ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹))) |
83 | 82 | biimpd 228 |
. . . . . . . . 9
⊢ (𝐹:𝐷⟶ℝ → (∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷) → ∀𝑎 ∈ ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹))) |
84 | 83 | imp 406 |
. . . . . . . 8
⊢ ((𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) → ∀𝑎 ∈ ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
85 | 84 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) → ∀𝑎 ∈ ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
86 | 85 | 3adantr1 1167 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) → ∀𝑎 ∈ ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
87 | 78, 86 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) → (𝐹 ∈ (ℝ ↑pm ∪ 𝑆)
∧ ∀𝑎 ∈
ℝ (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹))) |
88 | 87, 37 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) → 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)}) |
89 | 15 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)} = (SMblFn‘𝑆)) |
90 | 89 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) → {𝑓 ∈ (ℝ ↑pm ∪ 𝑆)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝑓)} = (SMblFn‘𝑆)) |
91 | 88, 90 | eleqtrd 2841 |
. . 3
⊢ ((𝜑 ∧ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) → 𝐹 ∈ (SMblFn‘𝑆)) |
92 | 91 | ex 412 |
. 2
⊢ (𝜑 → ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) → 𝐹 ∈ (SMblFn‘𝑆))) |
93 | 57, 92 | impbid 211 |
1
⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |