| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltmnf2f | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| pimltmnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
| pimltmnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
| pimltmnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| Ref | Expression |
|---|---|
| pimltmnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimltmnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) < -∞ | |
| 4 | pimltmnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 4, 5 | nffv 6836 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 7 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥 < | |
| 8 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥-∞ | |
| 9 | 6, 7, 8 | nfbr 5142 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) < -∞ |
| 10 | fveq2 6826 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 11 | 10 | breq1d 5105 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < -∞ ↔ (𝐹‘𝑦) < -∞)) |
| 12 | 1, 2, 3, 9, 11 | cbvrabw 3432 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} |
| 13 | pimltmnf2f.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 14 | 13 | ffvelcdmda 7022 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 15 | 14 | rexrd 11184 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ*) |
| 16 | 15 | mnfled 13056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ ≤ (𝐹‘𝑦)) |
| 17 | mnfxr 11191 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ ∈ ℝ*) |
| 19 | 18, 15 | xrlenltd 11200 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (-∞ ≤ (𝐹‘𝑦) ↔ ¬ (𝐹‘𝑦) < -∞)) |
| 20 | 16, 19 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ¬ (𝐹‘𝑦) < -∞) |
| 21 | 20 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) < -∞) |
| 22 | rabeq0 4341 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) < -∞) | |
| 23 | 21, 22 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} = ∅) |
| 24 | 12, 23 | eqtrid 2776 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 {crab 3396 ∅c0 4286 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 ℝcr 11027 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: pimltmnf2 46680 smfpimltxr 46729 |
| Copyright terms: Public domain | W3C validator |