Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltmnf2f Structured version   Visualization version   GIF version

Theorem pimltmnf2f 44235
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
pimltmnf2f.1 𝑥𝐹
pimltmnf2f.2 𝑥𝐴
pimltmnf2f.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltmnf2f (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)

Proof of Theorem pimltmnf2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pimltmnf2f.2 . . 3 𝑥𝐴
2 nfcv 2907 . . 3 𝑦𝐴
3 nfv 1917 . . 3 𝑦(𝐹𝑥) < -∞
4 pimltmnf2f.1 . . . . 5 𝑥𝐹
5 nfcv 2907 . . . . 5 𝑥𝑦
64, 5nffv 6784 . . . 4 𝑥(𝐹𝑦)
7 nfcv 2907 . . . 4 𝑥 <
8 nfcv 2907 . . . 4 𝑥-∞
96, 7, 8nfbr 5121 . . 3 𝑥(𝐹𝑦) < -∞
10 fveq2 6774 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 5084 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) < -∞ ↔ (𝐹𝑦) < -∞))
121, 2, 3, 9, 11cbvrabw 3424 . 2 {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = {𝑦𝐴 ∣ (𝐹𝑦) < -∞}
13 pimltmnf2f.3 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
1413ffvelrnda 6961 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1514rexrd 11025 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ*)
1615mnfled 42928 . . . . 5 ((𝜑𝑦𝐴) → -∞ ≤ (𝐹𝑦))
17 mnfxr 11032 . . . . . . 7 -∞ ∈ ℝ*
1817a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → -∞ ∈ ℝ*)
1918, 15xrlenltd 11041 . . . . 5 ((𝜑𝑦𝐴) → (-∞ ≤ (𝐹𝑦) ↔ ¬ (𝐹𝑦) < -∞))
2016, 19mpbid 231 . . . 4 ((𝜑𝑦𝐴) → ¬ (𝐹𝑦) < -∞)
2120ralrimiva 3103 . . 3 (𝜑 → ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
22 rabeq0 4318 . . 3 ({𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅ ↔ ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
2321, 22sylibr 233 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅)
2412, 23eqtrid 2790 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  {crab 3068  c0 4256   class class class wbr 5074  wf 6429  cfv 6433  cr 10870  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  pimltmnf2  44236  smfpimltxr  44283
  Copyright terms: Public domain W3C validator