Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltmnf2f | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
Ref | Expression |
---|---|
pimltmnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
pimltmnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
pimltmnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
Ref | Expression |
---|---|
pimltmnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimltmnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) < -∞ | |
4 | pimltmnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6784 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑥 < | |
8 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑥-∞ | |
9 | 6, 7, 8 | nfbr 5121 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) < -∞ |
10 | fveq2 6774 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
11 | 10 | breq1d 5084 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < -∞ ↔ (𝐹‘𝑦) < -∞)) |
12 | 1, 2, 3, 9, 11 | cbvrabw 3424 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} |
13 | pimltmnf2f.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
14 | 13 | ffvelrnda 6961 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
15 | 14 | rexrd 11025 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ*) |
16 | 15 | mnfled 42928 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ ≤ (𝐹‘𝑦)) |
17 | mnfxr 11032 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ ∈ ℝ*) |
19 | 18, 15 | xrlenltd 11041 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (-∞ ≤ (𝐹‘𝑦) ↔ ¬ (𝐹‘𝑦) < -∞)) |
20 | 16, 19 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ¬ (𝐹‘𝑦) < -∞) |
21 | 20 | ralrimiva 3103 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) < -∞) |
22 | rabeq0 4318 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) < -∞) | |
23 | 21, 22 | sylibr 233 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} = ∅) |
24 | 12, 23 | eqtrid 2790 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 {crab 3068 ∅c0 4256 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 ℝcr 10870 -∞cmnf 11007 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: pimltmnf2 44236 smfpimltxr 44283 |
Copyright terms: Public domain | W3C validator |