Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltmnf2f Structured version   Visualization version   GIF version

Theorem pimltmnf2f 46702
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
pimltmnf2f.1 𝑥𝐹
pimltmnf2f.2 𝑥𝐴
pimltmnf2f.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltmnf2f (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)

Proof of Theorem pimltmnf2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pimltmnf2f.2 . . 3 𝑥𝐴
2 nfcv 2892 . . 3 𝑦𝐴
3 nfv 1914 . . 3 𝑦(𝐹𝑥) < -∞
4 pimltmnf2f.1 . . . . 5 𝑥𝐹
5 nfcv 2892 . . . . 5 𝑥𝑦
64, 5nffv 6871 . . . 4 𝑥(𝐹𝑦)
7 nfcv 2892 . . . 4 𝑥 <
8 nfcv 2892 . . . 4 𝑥-∞
96, 7, 8nfbr 5157 . . 3 𝑥(𝐹𝑦) < -∞
10 fveq2 6861 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 5120 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) < -∞ ↔ (𝐹𝑦) < -∞))
121, 2, 3, 9, 11cbvrabw 3444 . 2 {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = {𝑦𝐴 ∣ (𝐹𝑦) < -∞}
13 pimltmnf2f.3 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
1413ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1514rexrd 11231 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ*)
1615mnfled 13103 . . . . 5 ((𝜑𝑦𝐴) → -∞ ≤ (𝐹𝑦))
17 mnfxr 11238 . . . . . . 7 -∞ ∈ ℝ*
1817a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → -∞ ∈ ℝ*)
1918, 15xrlenltd 11247 . . . . 5 ((𝜑𝑦𝐴) → (-∞ ≤ (𝐹𝑦) ↔ ¬ (𝐹𝑦) < -∞))
2016, 19mpbid 232 . . . 4 ((𝜑𝑦𝐴) → ¬ (𝐹𝑦) < -∞)
2120ralrimiva 3126 . . 3 (𝜑 → ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
22 rabeq0 4354 . . 3 ({𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅ ↔ ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
2321, 22sylibr 234 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅)
2412, 23eqtrid 2777 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2877  wral 3045  {crab 3408  c0 4299   class class class wbr 5110  wf 6510  cfv 6514  cr 11074  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221
This theorem is referenced by:  pimltmnf2  46703  smfpimltxr  46752
  Copyright terms: Public domain W3C validator