Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltmnf2f Structured version   Visualization version   GIF version

Theorem pimltmnf2f 46734
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
pimltmnf2f.1 𝑥𝐹
pimltmnf2f.2 𝑥𝐴
pimltmnf2f.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltmnf2f (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)

Proof of Theorem pimltmnf2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pimltmnf2f.2 . . 3 𝑥𝐴
2 nfcv 2894 . . 3 𝑦𝐴
3 nfv 1915 . . 3 𝑦(𝐹𝑥) < -∞
4 pimltmnf2f.1 . . . . 5 𝑥𝐹
5 nfcv 2894 . . . . 5 𝑥𝑦
64, 5nffv 6832 . . . 4 𝑥(𝐹𝑦)
7 nfcv 2894 . . . 4 𝑥 <
8 nfcv 2894 . . . 4 𝑥-∞
96, 7, 8nfbr 5138 . . 3 𝑥(𝐹𝑦) < -∞
10 fveq2 6822 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 5101 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) < -∞ ↔ (𝐹𝑦) < -∞))
121, 2, 3, 9, 11cbvrabw 3430 . 2 {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = {𝑦𝐴 ∣ (𝐹𝑦) < -∞}
13 pimltmnf2f.3 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
1413ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1514rexrd 11159 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ*)
1615mnfled 13032 . . . . 5 ((𝜑𝑦𝐴) → -∞ ≤ (𝐹𝑦))
17 mnfxr 11166 . . . . . . 7 -∞ ∈ ℝ*
1817a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → -∞ ∈ ℝ*)
1918, 15xrlenltd 11175 . . . . 5 ((𝜑𝑦𝐴) → (-∞ ≤ (𝐹𝑦) ↔ ¬ (𝐹𝑦) < -∞))
2016, 19mpbid 232 . . . 4 ((𝜑𝑦𝐴) → ¬ (𝐹𝑦) < -∞)
2120ralrimiva 3124 . . 3 (𝜑 → ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
22 rabeq0 4338 . . 3 ({𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅ ↔ ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
2321, 22sylibr 234 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅)
2412, 23eqtrid 2778 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wral 3047  {crab 3395  c0 4283   class class class wbr 5091  wf 6477  cfv 6481  cr 11002  -∞cmnf 11141  *cxr 11142   < clt 11143  cle 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149
This theorem is referenced by:  pimltmnf2  46735  smfpimltxr  46784
  Copyright terms: Public domain W3C validator