| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltmnf2f | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| pimltmnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
| pimltmnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
| pimltmnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| Ref | Expression |
|---|---|
| pimltmnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimltmnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) < -∞ | |
| 4 | pimltmnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 4, 5 | nffv 6886 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 7 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑥 < | |
| 8 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑥-∞ | |
| 9 | 6, 7, 8 | nfbr 5166 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) < -∞ |
| 10 | fveq2 6876 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 11 | 10 | breq1d 5129 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < -∞ ↔ (𝐹‘𝑦) < -∞)) |
| 12 | 1, 2, 3, 9, 11 | cbvrabw 3452 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} |
| 13 | pimltmnf2f.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 14 | 13 | ffvelcdmda 7074 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 15 | 14 | rexrd 11285 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ*) |
| 16 | 15 | mnfled 13152 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ ≤ (𝐹‘𝑦)) |
| 17 | mnfxr 11292 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ ∈ ℝ*) |
| 19 | 18, 15 | xrlenltd 11301 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (-∞ ≤ (𝐹‘𝑦) ↔ ¬ (𝐹‘𝑦) < -∞)) |
| 20 | 16, 19 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ¬ (𝐹‘𝑦) < -∞) |
| 21 | 20 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) < -∞) |
| 22 | rabeq0 4363 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) < -∞) | |
| 23 | 21, 22 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} = ∅) |
| 24 | 12, 23 | eqtrid 2782 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ∀wral 3051 {crab 3415 ∅c0 4308 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 ℝcr 11128 -∞cmnf 11267 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 |
| This theorem is referenced by: pimltmnf2 46727 smfpimltxr 46776 |
| Copyright terms: Public domain | W3C validator |