| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltmnf2f | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| pimltmnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
| pimltmnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
| pimltmnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| Ref | Expression |
|---|---|
| pimltmnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimltmnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) < -∞ | |
| 4 | pimltmnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 4, 5 | nffv 6871 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 7 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥 < | |
| 8 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥-∞ | |
| 9 | 6, 7, 8 | nfbr 5157 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) < -∞ |
| 10 | fveq2 6861 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 11 | 10 | breq1d 5120 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < -∞ ↔ (𝐹‘𝑦) < -∞)) |
| 12 | 1, 2, 3, 9, 11 | cbvrabw 3444 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} |
| 13 | pimltmnf2f.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 14 | 13 | ffvelcdmda 7059 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 15 | 14 | rexrd 11231 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ*) |
| 16 | 15 | mnfled 13103 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ ≤ (𝐹‘𝑦)) |
| 17 | mnfxr 11238 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → -∞ ∈ ℝ*) |
| 19 | 18, 15 | xrlenltd 11247 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (-∞ ≤ (𝐹‘𝑦) ↔ ¬ (𝐹‘𝑦) < -∞)) |
| 20 | 16, 19 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ¬ (𝐹‘𝑦) < -∞) |
| 21 | 20 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) < -∞) |
| 22 | rabeq0 4354 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) < -∞) | |
| 23 | 21, 22 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < -∞} = ∅) |
| 24 | 12, 23 | eqtrid 2777 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < -∞} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 ∀wral 3045 {crab 3408 ∅c0 4299 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 ℝcr 11074 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: pimltmnf2 46703 smfpimltxr 46752 |
| Copyright terms: Public domain | W3C validator |