Detailed syntax breakdown of Definition df-spec
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cspc 30981 | . 2
class
Lambda | 
| 2 |  | vt | . . 3
setvar 𝑡 | 
| 3 |  | chba 30939 | . . . 4
class 
ℋ | 
| 4 |  | cmap 8867 | . . . 4
class 
↑m | 
| 5 | 3, 3, 4 | co 7432 | . . 3
class ( ℋ
↑m ℋ) | 
| 6 | 2 | cv 1538 | . . . . . . 7
class 𝑡 | 
| 7 |  | vx | . . . . . . . . 9
setvar 𝑥 | 
| 8 | 7 | cv 1538 | . . . . . . . 8
class 𝑥 | 
| 9 |  | cid 5576 | . . . . . . . . 9
class 
I | 
| 10 | 9, 3 | cres 5686 | . . . . . . . 8
class ( I
↾ ℋ) | 
| 11 |  | chot 30959 | . . . . . . . 8
class 
·op | 
| 12 | 8, 10, 11 | co 7432 | . . . . . . 7
class (𝑥 ·op (
I ↾ ℋ)) | 
| 13 |  | chod 30960 | . . . . . . 7
class 
−op | 
| 14 | 6, 12, 13 | co 7432 | . . . . . 6
class (𝑡 −op (𝑥 ·op (
I ↾ ℋ))) | 
| 15 | 3, 3, 14 | wf1 6557 | . . . . 5
wff (𝑡 −op (𝑥 ·op (
I ↾ ℋ))): ℋ–1-1→ ℋ | 
| 16 | 15 | wn 3 | . . . 4
wff  ¬
(𝑡 −op
(𝑥
·op ( I ↾ ℋ))): ℋ–1-1→ ℋ | 
| 17 |  | cc 11154 | . . . 4
class
ℂ | 
| 18 | 16, 7, 17 | crab 3435 | . . 3
class {𝑥 ∈ ℂ ∣ ¬
(𝑡 −op
(𝑥
·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} | 
| 19 | 2, 5, 18 | cmpt 5224 | . 2
class (𝑡 ∈ ( ℋ
↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op (
I ↾ ℋ))): ℋ–1-1→ ℋ}) | 
| 20 | 1, 19 | wceq 1539 | 1
wff Lambda =
(𝑡 ∈ ( ℋ
↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op (
I ↾ ℋ))): ℋ–1-1→ ℋ}) |