Detailed syntax breakdown of Definition df-spec
Step | Hyp | Ref
| Expression |
1 | | cspc 29323 |
. 2
class
Lambda |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | chba 29281 |
. . . 4
class
ℋ |
4 | | cmap 8615 |
. . . 4
class
↑m |
5 | 3, 3, 4 | co 7275 |
. . 3
class ( ℋ
↑m ℋ) |
6 | 2 | cv 1538 |
. . . . . . 7
class 𝑡 |
7 | | vx |
. . . . . . . . 9
setvar 𝑥 |
8 | 7 | cv 1538 |
. . . . . . . 8
class 𝑥 |
9 | | cid 5488 |
. . . . . . . . 9
class
I |
10 | 9, 3 | cres 5591 |
. . . . . . . 8
class ( I
↾ ℋ) |
11 | | chot 29301 |
. . . . . . . 8
class
·op |
12 | 8, 10, 11 | co 7275 |
. . . . . . 7
class (𝑥 ·op (
I ↾ ℋ)) |
13 | | chod 29302 |
. . . . . . 7
class
−op |
14 | 6, 12, 13 | co 7275 |
. . . . . 6
class (𝑡 −op (𝑥 ·op (
I ↾ ℋ))) |
15 | 3, 3, 14 | wf1 6430 |
. . . . 5
wff (𝑡 −op (𝑥 ·op (
I ↾ ℋ))): ℋ–1-1→ ℋ |
16 | 15 | wn 3 |
. . . 4
wff ¬
(𝑡 −op
(𝑥
·op ( I ↾ ℋ))): ℋ–1-1→ ℋ |
17 | | cc 10869 |
. . . 4
class
ℂ |
18 | 16, 7, 17 | crab 3068 |
. . 3
class {𝑥 ∈ ℂ ∣ ¬
(𝑡 −op
(𝑥
·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} |
19 | 2, 5, 18 | cmpt 5157 |
. 2
class (𝑡 ∈ ( ℋ
↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op (
I ↾ ℋ))): ℋ–1-1→ ℋ}) |
20 | 1, 19 | wceq 1539 |
1
wff Lambda =
(𝑡 ∈ ( ℋ
↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op (
I ↾ ℋ))): ℋ–1-1→ ℋ}) |