Detailed syntax breakdown of Definition df-spec
| Step | Hyp | Ref
| Expression |
| 1 | | cspc 30947 |
. 2
class
Lambda |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | chba 30905 |
. . . 4
class
ℋ |
| 4 | | cmap 8845 |
. . . 4
class
↑m |
| 5 | 3, 3, 4 | co 7410 |
. . 3
class ( ℋ
↑m ℋ) |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑡 |
| 7 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 8 | 7 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 9 | | cid 5552 |
. . . . . . . . 9
class
I |
| 10 | 9, 3 | cres 5661 |
. . . . . . . 8
class ( I
↾ ℋ) |
| 11 | | chot 30925 |
. . . . . . . 8
class
·op |
| 12 | 8, 10, 11 | co 7410 |
. . . . . . 7
class (𝑥 ·op (
I ↾ ℋ)) |
| 13 | | chod 30926 |
. . . . . . 7
class
−op |
| 14 | 6, 12, 13 | co 7410 |
. . . . . 6
class (𝑡 −op (𝑥 ·op (
I ↾ ℋ))) |
| 15 | 3, 3, 14 | wf1 6533 |
. . . . 5
wff (𝑡 −op (𝑥 ·op (
I ↾ ℋ))): ℋ–1-1→ ℋ |
| 16 | 15 | wn 3 |
. . . 4
wff ¬
(𝑡 −op
(𝑥
·op ( I ↾ ℋ))): ℋ–1-1→ ℋ |
| 17 | | cc 11132 |
. . . 4
class
ℂ |
| 18 | 16, 7, 17 | crab 3420 |
. . 3
class {𝑥 ∈ ℂ ∣ ¬
(𝑡 −op
(𝑥
·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} |
| 19 | 2, 5, 18 | cmpt 5206 |
. 2
class (𝑡 ∈ ( ℋ
↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op (
I ↾ ℋ))): ℋ–1-1→ ℋ}) |
| 20 | 1, 19 | wceq 1540 |
1
wff Lambda =
(𝑡 ∈ ( ℋ
↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op (
I ↾ ℋ))): ℋ–1-1→ ℋ}) |