Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmopval | Structured version Visualization version GIF version |
Description: Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopval | ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12804 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | supex 9152 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) ∈ V |
3 | ax-hilex 29262 | . 2 ⊢ ℋ ∈ V | |
4 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
5 | 4 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (normℎ‘(𝑡‘𝑦)) = (normℎ‘(𝑇‘𝑦))) |
6 | 5 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑥 = (normℎ‘(𝑡‘𝑦)) ↔ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
7 | 6 | anbi2d 628 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
8 | 7 | rexbidv 3225 | . . . 4 ⊢ (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
9 | 8 | abbidv 2808 | . . 3 ⊢ (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) |
10 | 9 | supeq1d 9135 | . 2 ⊢ (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
11 | df-nmop 30102 | . 2 ⊢ normop = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦)))}, ℝ*, < )) | |
12 | 2, 3, 3, 10, 11 | fvmptmap 8627 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 {cab 2715 ∃wrex 3064 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 supcsup 9129 1c1 10803 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 ℋchba 29182 normℎcno 29186 normopcnop 29208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-nmop 30102 |
This theorem is referenced by: nmopxr 30129 nmoprepnf 30130 nmoplb 30170 nmopub 30171 nmopnegi 30228 nmop0 30249 nmlnop0iALT 30258 nmopun 30277 nmcopexi 30290 pjnmopi 30411 |
Copyright terms: Public domain | W3C validator |