Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmopval | Structured version Visualization version GIF version |
Description: Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopval | ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12875 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | supex 9222 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) ∈ V |
3 | ax-hilex 29361 | . 2 ⊢ ℋ ∈ V | |
4 | fveq1 6773 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
5 | 4 | fveq2d 6778 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (normℎ‘(𝑡‘𝑦)) = (normℎ‘(𝑇‘𝑦))) |
6 | 5 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑥 = (normℎ‘(𝑡‘𝑦)) ↔ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
7 | 6 | anbi2d 629 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
8 | 7 | rexbidv 3226 | . . . 4 ⊢ (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
9 | 8 | abbidv 2807 | . . 3 ⊢ (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) |
10 | 9 | supeq1d 9205 | . 2 ⊢ (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
11 | df-nmop 30201 | . 2 ⊢ normop = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦)))}, ℝ*, < )) | |
12 | 2, 3, 3, 10, 11 | fvmptmap 8669 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 {cab 2715 ∃wrex 3065 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 supcsup 9199 1c1 10872 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 ℋchba 29281 normℎcno 29285 normopcnop 29307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-nmop 30201 |
This theorem is referenced by: nmopxr 30228 nmoprepnf 30229 nmoplb 30269 nmopub 30270 nmopnegi 30327 nmop0 30348 nmlnop0iALT 30357 nmopun 30376 nmcopexi 30389 pjnmopi 30510 |
Copyright terms: Public domain | W3C validator |