| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmopval | Structured version Visualization version GIF version | ||
| Description: Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmopval | ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13043 | . . 3 ⊢ < Or ℝ* | |
| 2 | 1 | supex 9354 | . 2 ⊢ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < ) ∈ V |
| 3 | ax-hilex 30943 | . 2 ⊢ ℋ ∈ V | |
| 4 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
| 5 | 4 | fveq2d 6826 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (normℎ‘(𝑡‘𝑦)) = (normℎ‘(𝑇‘𝑦))) |
| 6 | 5 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑥 = (normℎ‘(𝑡‘𝑦)) ↔ 𝑥 = (normℎ‘(𝑇‘𝑦)))) |
| 7 | 6 | anbi2d 630 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
| 8 | 7 | rexbidv 3153 | . . . 4 ⊢ (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))))) |
| 9 | 8 | abbidv 2795 | . . 3 ⊢ (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) |
| 10 | 9 | supeq1d 9336 | . 2 ⊢ (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 11 | df-nmop 31783 | . 2 ⊢ normop = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑦)))}, ℝ*, < )) | |
| 12 | 2, 3, 3, 10, 11 | fvmptmap 8808 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 {cab 2707 ∃wrex 3053 class class class wbr 5092 ⟶wf 6478 ‘cfv 6482 supcsup 9330 1c1 11010 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 ℋchba 30863 normℎcno 30867 normopcnop 30889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-hilex 30943 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-nmop 31783 |
| This theorem is referenced by: nmopxr 31810 nmoprepnf 31811 nmoplb 31851 nmopub 31852 nmopnegi 31909 nmop0 31930 nmlnop0iALT 31939 nmopun 31958 nmcopexi 31971 pjnmopi 32092 |
| Copyright terms: Public domain | W3C validator |