HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopval Structured version   Visualization version   GIF version

Theorem nmopval 30119
Description: Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nmopval (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem nmopval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 xrltso 12804 . . 3 < Or ℝ*
21supex 9152 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ) ∈ V
3 ax-hilex 29262 . 2 ℋ ∈ V
4 fveq1 6755 . . . . . . . 8 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
54fveq2d 6760 . . . . . . 7 (𝑡 = 𝑇 → (norm‘(𝑡𝑦)) = (norm‘(𝑇𝑦)))
65eqeq2d 2749 . . . . . 6 (𝑡 = 𝑇 → (𝑥 = (norm‘(𝑡𝑦)) ↔ 𝑥 = (norm‘(𝑇𝑦))))
76anbi2d 628 . . . . 5 (𝑡 = 𝑇 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))))
87rexbidv 3225 . . . 4 (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))))
98abbidv 2808 . . 3 (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
109supeq1d 9135 . 2 (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
11 df-nmop 30102 . 2 normop = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦)))}, ℝ*, < ))
122, 3, 3, 10, 11fvmptmap 8627 1 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  {cab 2715  wrex 3064   class class class wbr 5070  wf 6414  cfv 6418  supcsup 9129  1c1 10803  *cxr 10939   < clt 10940  cle 10941  chba 29182  normcno 29186  normopcnop 29208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-nmop 30102
This theorem is referenced by:  nmopxr  30129  nmoprepnf  30130  nmoplb  30170  nmopub  30171  nmopnegi  30228  nmop0  30249  nmlnop0iALT  30258  nmopun  30277  nmcopexi  30290  pjnmopi  30411
  Copyright terms: Public domain W3C validator