HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopval Structured version   Visualization version   GIF version

Theorem nmopval 29291
Description: Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nmopval (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem nmopval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 xrltso 12288 . . 3 < Or ℝ*
21supex 8659 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ) ∈ V
3 ax-hilex 28432 . 2 ℋ ∈ V
4 fveq1 6447 . . . . . . . 8 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
54fveq2d 6452 . . . . . . 7 (𝑡 = 𝑇 → (norm‘(𝑡𝑦)) = (norm‘(𝑇𝑦)))
65eqeq2d 2788 . . . . . 6 (𝑡 = 𝑇 → (𝑥 = (norm‘(𝑡𝑦)) ↔ 𝑥 = (norm‘(𝑇𝑦))))
76anbi2d 622 . . . . 5 (𝑡 = 𝑇 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))))
87rexbidv 3237 . . . 4 (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))))
98abbidv 2906 . . 3 (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
109supeq1d 8642 . 2 (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
11 df-nmop 29274 . 2 normop = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑦)))}, ℝ*, < ))
122, 3, 3, 10, 11fvmptmap 8180 1 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  {cab 2763  wrex 3091   class class class wbr 4888  wf 6133  cfv 6137  supcsup 8636  1c1 10275  *cxr 10412   < clt 10413  cle 10414  chba 28352  normcno 28356  normopcnop 28378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-hilex 28432
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-sup 8638  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-nmop 29274
This theorem is referenced by:  nmopxr  29301  nmoprepnf  29302  nmoplb  29342  nmopub  29343  nmopnegi  29400  nmop0  29421  nmlnop0iALT  29430  nmopun  29449  nmcopexi  29462  pjnmopi  29583
  Copyright terms: Public domain W3C validator