HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  specval Structured version   Visualization version   GIF version

Theorem specval 30392
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
specval (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
Distinct variable group:   𝑥,𝑇

Proof of Theorem specval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cnex 11031 . . 3 ℂ ∈ V
21rabex 5270 . 2 {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ∈ V
3 ax-hilex 29493 . 2 ℋ ∈ V
4 oveq1 7323 . . . . 5 (𝑡 = 𝑇 → (𝑡op (𝑥 ·op ( I ↾ ℋ))) = (𝑇op (𝑥 ·op ( I ↾ ℋ))))
5 f1eq1 6702 . . . . 5 ((𝑡op (𝑥 ·op ( I ↾ ℋ))) = (𝑇op (𝑥 ·op ( I ↾ ℋ))) → ((𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
64, 5syl 17 . . . 4 (𝑡 = 𝑇 → ((𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
76notbid 317 . . 3 (𝑡 = 𝑇 → (¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
87rabbidv 3411 . 2 (𝑡 = 𝑇 → {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
9 df-spec 30349 . 2 Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
102, 3, 3, 8, 9fvmptmap 8718 1 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1540  {crab 3403   I cid 5505  cres 5609  wf 6461  1-1wf1 6462  cfv 6465  (class class class)co 7316  cc 10948  chba 29413   ·op chot 29433  op chod 29434  Lambdacspc 29455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-hilex 29493
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-map 8666  df-spec 30349
This theorem is referenced by:  speccl  30393
  Copyright terms: Public domain W3C validator