![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > specval | Structured version Visualization version GIF version |
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
specval | β’ (π: ββΆ β β (Lambdaβπ) = {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11187 | . . 3 β’ β β V | |
2 | 1 | rabex 5331 | . 2 β’ {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β} β V |
3 | ax-hilex 30239 | . 2 β’ β β V | |
4 | oveq1 7412 | . . . . 5 β’ (π‘ = π β (π‘ βop (π₯ Β·op ( I βΎ β))) = (π βop (π₯ Β·op ( I βΎ β)))) | |
5 | f1eq1 6779 | . . . . 5 β’ ((π‘ βop (π₯ Β·op ( I βΎ β))) = (π βop (π₯ Β·op ( I βΎ β))) β ((π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β β (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β)) | |
6 | 4, 5 | syl 17 | . . . 4 β’ (π‘ = π β ((π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β β (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β)) |
7 | 6 | notbid 317 | . . 3 β’ (π‘ = π β (Β¬ (π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β β Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β)) |
8 | 7 | rabbidv 3440 | . 2 β’ (π‘ = π β {π₯ β β β£ Β¬ (π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β} = {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) |
9 | df-spec 31095 | . 2 β’ Lambda = (π‘ β ( β βm β) β¦ {π₯ β β β£ Β¬ (π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) | |
10 | 2, 3, 3, 8, 9 | fvmptmap 8871 | 1 β’ (π: ββΆ β β (Lambdaβπ) = {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 = wceq 1541 {crab 3432 I cid 5572 βΎ cres 5677 βΆwf 6536 β1-1βwf1 6537 βcfv 6540 (class class class)co 7405 βcc 11104 βchba 30159 Β·op chot 30179 βop chod 30180 Lambdacspc 30201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-hilex 30239 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-spec 31095 |
This theorem is referenced by: speccl 31139 |
Copyright terms: Public domain | W3C validator |