HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  specval Structured version   Visualization version   GIF version

Theorem specval 31860
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
specval (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
Distinct variable group:   𝑥,𝑇

Proof of Theorem specval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cnex 11109 . . 3 ℂ ∈ V
21rabex 5281 . 2 {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ∈ V
3 ax-hilex 30961 . 2 ℋ ∈ V
4 oveq1 7360 . . . . 5 (𝑡 = 𝑇 → (𝑡op (𝑥 ·op ( I ↾ ℋ))) = (𝑇op (𝑥 ·op ( I ↾ ℋ))))
5 f1eq1 6719 . . . . 5 ((𝑡op (𝑥 ·op ( I ↾ ℋ))) = (𝑇op (𝑥 ·op ( I ↾ ℋ))) → ((𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
64, 5syl 17 . . . 4 (𝑡 = 𝑇 → ((𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
76notbid 318 . . 3 (𝑡 = 𝑇 → (¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
87rabbidv 3404 . 2 (𝑡 = 𝑇 → {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
9 df-spec 31817 . 2 Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
102, 3, 3, 8, 9fvmptmap 8815 1 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  {crab 3396   I cid 5517  cres 5625  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  cc 11026  chba 30881   ·op chot 30901  op chod 30902  Lambdacspc 30923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-hilex 30961
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-spec 31817
This theorem is referenced by:  speccl  31861
  Copyright terms: Public domain W3C validator