| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > specval | Structured version Visualization version GIF version | ||
| Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| specval | ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11156 | . . 3 ⊢ ℂ ∈ V | |
| 2 | 1 | rabex 5297 | . 2 ⊢ {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ∈ V |
| 3 | ax-hilex 30935 | . 2 ⊢ ℋ ∈ V | |
| 4 | oveq1 7397 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ)))) | |
| 5 | f1eq1 6754 | . . . . 5 ⊢ ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ))) → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
| 7 | 6 | notbid 318 | . . 3 ⊢ (𝑡 = 𝑇 → (¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
| 8 | 7 | rabbidv 3416 | . 2 ⊢ (𝑡 = 𝑇 → {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
| 9 | df-spec 31791 | . 2 ⊢ Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | |
| 10 | 2, 3, 3, 8, 9 | fvmptmap 8857 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 {crab 3408 I cid 5535 ↾ cres 5643 ⟶wf 6510 –1-1→wf1 6511 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℋchba 30855 ·op chot 30875 −op chod 30876 Lambdacspc 30897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-spec 31791 |
| This theorem is referenced by: speccl 31835 |
| Copyright terms: Public domain | W3C validator |