HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  specval Structured version   Visualization version   GIF version

Theorem specval 31918
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
specval (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
Distinct variable group:   𝑥,𝑇

Proof of Theorem specval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cnex 11237 . . 3 ℂ ∈ V
21rabex 5338 . 2 {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ∈ V
3 ax-hilex 31019 . 2 ℋ ∈ V
4 oveq1 7439 . . . . 5 (𝑡 = 𝑇 → (𝑡op (𝑥 ·op ( I ↾ ℋ))) = (𝑇op (𝑥 ·op ( I ↾ ℋ))))
5 f1eq1 6798 . . . . 5 ((𝑡op (𝑥 ·op ( I ↾ ℋ))) = (𝑇op (𝑥 ·op ( I ↾ ℋ))) → ((𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
64, 5syl 17 . . . 4 (𝑡 = 𝑇 → ((𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
76notbid 318 . . 3 (𝑡 = 𝑇 → (¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
87rabbidv 3443 . 2 (𝑡 = 𝑇 → {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
9 df-spec 31875 . 2 Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
102, 3, 3, 8, 9fvmptmap 8922 1 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1539  {crab 3435   I cid 5576  cres 5686  wf 6556  1-1wf1 6557  cfv 6560  (class class class)co 7432  cc 11154  chba 30939   ·op chot 30959  op chod 30960  Lambdacspc 30981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-hilex 31019
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-spec 31875
This theorem is referenced by:  speccl  31919
  Copyright terms: Public domain W3C validator