![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > specval | Structured version Visualization version GIF version |
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
specval | ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11234 | . . 3 ⊢ ℂ ∈ V | |
2 | 1 | rabex 5345 | . 2 ⊢ {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ∈ V |
3 | ax-hilex 31028 | . 2 ⊢ ℋ ∈ V | |
4 | oveq1 7438 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ)))) | |
5 | f1eq1 6800 | . . . . 5 ⊢ ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ))) → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
7 | 6 | notbid 318 | . . 3 ⊢ (𝑡 = 𝑇 → (¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
8 | 7 | rabbidv 3441 | . 2 ⊢ (𝑡 = 𝑇 → {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
9 | df-spec 31884 | . 2 ⊢ Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | |
10 | 2, 3, 3, 8, 9 | fvmptmap 8920 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 {crab 3433 I cid 5582 ↾ cres 5691 ⟶wf 6559 –1-1→wf1 6560 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℋchba 30948 ·op chot 30968 −op chod 30969 Lambdacspc 30990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-hilex 31028 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-spec 31884 |
This theorem is referenced by: speccl 31928 |
Copyright terms: Public domain | W3C validator |