HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  specval Structured version   Visualization version   GIF version

Theorem specval 31834
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
specval (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
Distinct variable group:   𝑥,𝑇

Proof of Theorem specval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cnex 11156 . . 3 ℂ ∈ V
21rabex 5297 . 2 {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ∈ V
3 ax-hilex 30935 . 2 ℋ ∈ V
4 oveq1 7397 . . . . 5 (𝑡 = 𝑇 → (𝑡op (𝑥 ·op ( I ↾ ℋ))) = (𝑇op (𝑥 ·op ( I ↾ ℋ))))
5 f1eq1 6754 . . . . 5 ((𝑡op (𝑥 ·op ( I ↾ ℋ))) = (𝑇op (𝑥 ·op ( I ↾ ℋ))) → ((𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
64, 5syl 17 . . . 4 (𝑡 = 𝑇 → ((𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
76notbid 318 . . 3 (𝑡 = 𝑇 → (¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ))
87rabbidv 3416 . 2 (𝑡 = 𝑇 → {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
9 df-spec 31791 . 2 Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
102, 3, 3, 8, 9fvmptmap 8857 1 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  {crab 3408   I cid 5535  cres 5643  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  cc 11073  chba 30855   ·op chot 30875  op chod 30876  Lambdacspc 30897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-spec 31791
This theorem is referenced by:  speccl  31835
  Copyright terms: Public domain W3C validator