| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > specval | Structured version Visualization version GIF version | ||
| Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| specval | ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11149 | . . 3 ⊢ ℂ ∈ V | |
| 2 | 1 | rabex 5294 | . 2 ⊢ {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ∈ V |
| 3 | ax-hilex 30928 | . 2 ⊢ ℋ ∈ V | |
| 4 | oveq1 7394 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ)))) | |
| 5 | f1eq1 6751 | . . . . 5 ⊢ ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ))) → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
| 7 | 6 | notbid 318 | . . 3 ⊢ (𝑡 = 𝑇 → (¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
| 8 | 7 | rabbidv 3413 | . 2 ⊢ (𝑡 = 𝑇 → {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
| 9 | df-spec 31784 | . 2 ⊢ Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | |
| 10 | 2, 3, 3, 8, 9 | fvmptmap 8854 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 {crab 3405 I cid 5532 ↾ cres 5640 ⟶wf 6507 –1-1→wf1 6508 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℋchba 30848 ·op chot 30868 −op chod 30869 Lambdacspc 30890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-spec 31784 |
| This theorem is referenced by: speccl 31828 |
| Copyright terms: Public domain | W3C validator |