![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > specval | Structured version Visualization version GIF version |
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
specval | β’ (π: ββΆ β β (Lambdaβπ) = {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11190 | . . 3 β’ β β V | |
2 | 1 | rabex 5325 | . 2 β’ {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β} β V |
3 | ax-hilex 30756 | . 2 β’ β β V | |
4 | oveq1 7411 | . . . . 5 β’ (π‘ = π β (π‘ βop (π₯ Β·op ( I βΎ β))) = (π βop (π₯ Β·op ( I βΎ β)))) | |
5 | f1eq1 6775 | . . . . 5 β’ ((π‘ βop (π₯ Β·op ( I βΎ β))) = (π βop (π₯ Β·op ( I βΎ β))) β ((π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β β (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β)) | |
6 | 4, 5 | syl 17 | . . . 4 β’ (π‘ = π β ((π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β β (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β)) |
7 | 6 | notbid 318 | . . 3 β’ (π‘ = π β (Β¬ (π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β β Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β)) |
8 | 7 | rabbidv 3434 | . 2 β’ (π‘ = π β {π₯ β β β£ Β¬ (π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β} = {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) |
9 | df-spec 31612 | . 2 β’ Lambda = (π‘ β ( β βm β) β¦ {π₯ β β β£ Β¬ (π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) | |
10 | 2, 3, 3, 8, 9 | fvmptmap 8874 | 1 β’ (π: ββΆ β β (Lambdaβπ) = {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 = wceq 1533 {crab 3426 I cid 5566 βΎ cres 5671 βΆwf 6532 β1-1βwf1 6533 βcfv 6536 (class class class)co 7404 βcc 11107 βchba 30676 Β·op chot 30696 βop chod 30697 Lambdacspc 30718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-hilex 30756 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8821 df-spec 31612 |
This theorem is referenced by: speccl 31656 |
Copyright terms: Public domain | W3C validator |