![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > specval | Structured version Visualization version GIF version |
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
specval | β’ (π: ββΆ β β (Lambdaβπ) = {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11227 | . . 3 β’ β β V | |
2 | 1 | rabex 5338 | . 2 β’ {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β} β V |
3 | ax-hilex 30829 | . 2 β’ β β V | |
4 | oveq1 7433 | . . . . 5 β’ (π‘ = π β (π‘ βop (π₯ Β·op ( I βΎ β))) = (π βop (π₯ Β·op ( I βΎ β)))) | |
5 | f1eq1 6793 | . . . . 5 β’ ((π‘ βop (π₯ Β·op ( I βΎ β))) = (π βop (π₯ Β·op ( I βΎ β))) β ((π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β β (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β)) | |
6 | 4, 5 | syl 17 | . . . 4 β’ (π‘ = π β ((π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β β (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β)) |
7 | 6 | notbid 317 | . . 3 β’ (π‘ = π β (Β¬ (π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β β Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β)) |
8 | 7 | rabbidv 3438 | . 2 β’ (π‘ = π β {π₯ β β β£ Β¬ (π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β} = {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) |
9 | df-spec 31685 | . 2 β’ Lambda = (π‘ β ( β βm β) β¦ {π₯ β β β£ Β¬ (π‘ βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) | |
10 | 2, 3, 3, 8, 9 | fvmptmap 8906 | 1 β’ (π: ββΆ β β (Lambdaβπ) = {π₯ β β β£ Β¬ (π βop (π₯ Β·op ( I βΎ β))): ββ1-1β β}) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 = wceq 1533 {crab 3430 I cid 5579 βΎ cres 5684 βΆwf 6549 β1-1βwf1 6550 βcfv 6553 (class class class)co 7426 βcc 11144 βchba 30749 Β·op chot 30769 βop chod 30770 Lambdacspc 30791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-hilex 30829 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-map 8853 df-spec 31685 |
This theorem is referenced by: speccl 31729 |
Copyright terms: Public domain | W3C validator |