Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > specval | Structured version Visualization version GIF version |
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
specval | ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10883 | . . 3 ⊢ ℂ ∈ V | |
2 | 1 | rabex 5251 | . 2 ⊢ {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ∈ V |
3 | ax-hilex 29262 | . 2 ⊢ ℋ ∈ V | |
4 | oveq1 7262 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ)))) | |
5 | f1eq1 6649 | . . . . 5 ⊢ ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ))) → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
7 | 6 | notbid 317 | . . 3 ⊢ (𝑡 = 𝑇 → (¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
8 | 7 | rabbidv 3404 | . 2 ⊢ (𝑡 = 𝑇 → {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
9 | df-spec 30118 | . 2 ⊢ Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | |
10 | 2, 3, 3, 8, 9 | fvmptmap 8627 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 {crab 3067 I cid 5479 ↾ cres 5582 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℋchba 29182 ·op chot 29202 −op chod 29203 Lambdacspc 29224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-spec 30118 |
This theorem is referenced by: speccl 30162 |
Copyright terms: Public domain | W3C validator |