| Metamath
Proof Explorer Theorem List (p. 475 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fargshiftfv 47401* | If a class is a function, then the values of the "shifted function" correspond to the function values of the class. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑋 ∈ (0..^𝑁) → (𝐺‘𝑋) = (𝐹‘(𝑋 + 1)))) | ||
| Theorem | fargshiftf 47402* | If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) | ||
| Theorem | fargshiftf1 47403* | If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸) | ||
| Theorem | fargshiftfo 47404* | If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸) | ||
| Theorem | fargshiftfva 47405* | The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) | ||
| Theorem | lswn0 47406 | The last symbol of a not empty word exists. The empty set must be excluded as symbol, because otherwise, it cannot be distinguished between valid cases (∅ is the last symbol) and invalid cases (∅ means that no last symbol exists. This is because of the special definition of a function in set.mm. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅) | ||
| Syntax | wich 47407 | Extend wff notation to include the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. Read this notation as "𝑥 and 𝑦 are interchangeable in wff 𝜑". |
| wff [𝑥⇄𝑦]𝜑 | ||
| Definition | df-ich 47408* | Define the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. For an alternate definition using implicit substitution and a temporary setvar variable see ichcircshi 47416. Another, equivalent definition using two temporary setvar variables is provided in dfich2 47420. (Contributed by AV, 29-Jul-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | nfich1 47409 | The first interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.) |
| ⊢ Ⅎ𝑥[𝑥⇄𝑦]𝜑 | ||
| Theorem | nfich2 47410 | The second interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.) |
| ⊢ Ⅎ𝑦[𝑥⇄𝑦]𝜑 | ||
| Theorem | ichv 47411* | Setvar variables are interchangeable in a wff they do not appear in. (Contributed by SN, 23-Nov-2023.) |
| ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichf 47412 | Setvar variables are interchangeable in a wff they are not free in. (Contributed by SN, 23-Nov-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichid 47413 | A setvar variable is always interchangeable with itself. (Contributed by AV, 29-Jul-2023.) |
| ⊢ [𝑥⇄𝑥]𝜑 | ||
| Theorem | icht 47414 | A theorem is interchangeable. (Contributed by SN, 4-May-2024.) |
| ⊢ 𝜑 ⇒ ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichbidv 47415* | Formula building rule for interchangeability (deduction). (Contributed by SN, 4-May-2024.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑥⇄𝑦]𝜓 ↔ [𝑥⇄𝑦]𝜒)) | ||
| Theorem | ichcircshi 47416* | The setvar variables are interchangeable if they can be circularily shifted using a third setvar variable, using implicit substitution. (Contributed by AV, 29-Jul-2023.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜑)) ⇒ ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichan 47417 | If two setvar variables are interchangeable in two wffs, then they are interchangeable in the conjunction of these two wffs. Notice that the reverse implication is not necessarily true. Corresponding theorems will hold for other commutative operations, too. (Contributed by AV, 31-Jul-2023.) Use df-ich 47408 instead of dfich2 47420 to reduce axioms. (Revised by SN, 4-May-2024.) |
| ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 ∧ 𝜓)) | ||
| Theorem | ichn 47418 | Negation does not affect interchangeability. (Contributed by SN, 30-Aug-2023.) |
| ⊢ ([𝑎⇄𝑏]𝜑 ↔ [𝑎⇄𝑏] ¬ 𝜑) | ||
| Theorem | ichim 47419 | Formula building rule for implication in interchangeability. (Contributed by SN, 4-May-2024.) |
| ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 → 𝜓)) | ||
| Theorem | dfich2 47420* | Alternate definition of the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. (Contributed by AV and WL, 6-Aug-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) | ||
| Theorem | ichcom 47421* | The interchangeability of setvar variables is commutative. (Contributed by AV, 20-Aug-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑦⇄𝑥]𝜓) | ||
| Theorem | ichbi12i 47422* | Equivalence for interchangeable setvar variables. (Contributed by AV, 29-Jul-2023.) |
| ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑎⇄𝑏]𝜒) | ||
| Theorem | icheqid 47423 | In an equality for the same setvar variable, the setvar variable is interchangeable by itself. Special case of ichid 47413 and icheq 47424 without distinct variables restriction. (Contributed by AV, 29-Jul-2023.) |
| ⊢ [𝑥⇄𝑥]𝑥 = 𝑥 | ||
| Theorem | icheq 47424* | In an equality of setvar variables, the setvar variables are interchangeable. (Contributed by AV, 29-Jul-2023.) |
| ⊢ [𝑥⇄𝑦]𝑥 = 𝑦 | ||
| Theorem | ichnfimlem 47425* | Lemma for ichnfim 47426: A substitution for a nonfree variable has no effect. (Contributed by Wolf Lammen, 6-Aug-2023.) Avoid ax-13 2376. (Revised by GG, 1-May-2024.) |
| ⊢ (∀𝑦Ⅎ𝑥𝜑 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | ||
| Theorem | ichnfim 47426* | If in an interchangeability context 𝑥 is not free in 𝜑, the same holds for 𝑦. (Contributed by Wolf Lammen, 6-Aug-2023.) (Revised by AV, 23-Sep-2023.) |
| ⊢ ((∀𝑦Ⅎ𝑥𝜑 ∧ [𝑥⇄𝑦]𝜑) → ∀𝑥Ⅎ𝑦𝜑) | ||
| Theorem | ichnfb 47427* | If 𝑥 and 𝑦 are interchangeable in 𝜑, they are both free or both not free in 𝜑. (Contributed by Wolf Lammen, 6-Aug-2023.) (Revised by AV, 23-Sep-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜑 → (∀𝑥Ⅎ𝑦𝜑 ↔ ∀𝑦Ⅎ𝑥𝜑)) | ||
| Theorem | ichal 47428* | Move a universal quantifier inside interchangeability. (Contributed by SN, 30-Aug-2023.) |
| ⊢ (∀𝑥[𝑎⇄𝑏]𝜑 → [𝑎⇄𝑏]∀𝑥𝜑) | ||
| Theorem | ich2al 47429 | Two setvar variables are always interchangeable when there are two universal quantifiers. (Contributed by SN, 23-Nov-2023.) |
| ⊢ [𝑥⇄𝑦]∀𝑥∀𝑦𝜑 | ||
| Theorem | ich2ex 47430 | Two setvar variables are always interchangeable when there are two existential quantifiers. (Contributed by SN, 23-Nov-2023.) |
| ⊢ [𝑥⇄𝑦]∃𝑥∃𝑦𝜑 | ||
| Theorem | ichexmpl1 47431* | Example for interchangeable setvar variables in a statement of predicate calculus with equality. (Contributed by AV, 31-Jul-2023.) |
| ⊢ [𝑎⇄𝑏]∃𝑎∃𝑏∃𝑐(𝑎 = 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) | ||
| Theorem | ichexmpl2 47432* | Example for interchangeable setvar variables in an arithmetic expression. (Contributed by AV, 31-Jul-2023.) |
| ⊢ [𝑎⇄𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)) | ||
| Theorem | ich2exprop 47433* | If the setvar variables are interchangeable in a wff, there is an ordered pair fulfilling the wff iff there is an unordered pair fulfilling the wff. (Contributed by AV, 16-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ [𝑎⇄𝑏]𝜑) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑) ↔ ∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑))) | ||
| Theorem | ichnreuop 47434* | If the setvar variables are interchangeable in a wff, there is never a unique ordered pair with different components fulfilling the wff (because if 〈𝑎, 𝑏〉 fulfils the wff, then also 〈𝑏, 𝑎〉 fulfils the wff). (Contributed by AV, 27-Aug-2023.) |
| ⊢ ([𝑎⇄𝑏]𝜑 → ¬ ∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑎 ≠ 𝑏 ∧ 𝜑)) | ||
| Theorem | ichreuopeq 47435* | If the setvar variables are interchangeable in a wff, and there is a unique ordered pair fulfilling the wff, then both setvar variables must be equal. (Contributed by AV, 28-Aug-2023.) |
| ⊢ ([𝑎⇄𝑏]𝜑 → (∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏(𝑎 = 𝑏 ∧ 𝜑))) | ||
| Theorem | sprid 47436 | Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| ⊢ {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | ||
| Theorem | elsprel 47437* | An unordered pair is an element of all unordered pairs. At least one of the two elements of the unordered pair must be a set. Otherwise, the unordered pair would be the empty set, see prprc 4743, which is not an element of all unordered pairs, see spr0nelg 47438. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | spr0nelg 47438* | The empty set is not an element of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | ||
| Syntax | cspr 47439 | Extend class notation with set of pairs. |
| class Pairs | ||
| Definition | df-spr 47440* | Define the function which maps a set 𝑣 to the set of pairs consisting of elements of the set 𝑣. (Contributed by AV, 21-Nov-2021.) |
| ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprval 47441* | The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprvalpw 47442* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprssspr 47443* | The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | ||
| Theorem | spr0el 47444 | The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ∅ ∉ (Pairs‘𝑉) | ||
| Theorem | sprvalpwn0 47445* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprel 47446* | An element of the set of all unordered pairs over a given set 𝑉 is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏}) | ||
| Theorem | prssspr 47447* | An element of a subset of the set of all unordered pairs over a given set 𝑉, is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ ((𝑃 ⊆ (Pairs‘𝑉) ∧ 𝑋 ∈ 𝑃) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏}) | ||
| Theorem | prelspr 47448 | An unordered pair of elements of a fixed set 𝑉 belongs to the set of all unordered pairs over the set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉)) | ||
| Theorem | prsprel 47449 | The elements of a pair from the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | ||
| Theorem | prsssprel 47450 | The elements of a pair from a subset of the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝑃 ⊆ (Pairs‘𝑉) ∧ {𝑋, 𝑌} ∈ 𝑃 ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | ||
| Theorem | sprvalpwle2 47451* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 24-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) | ||
| Theorem | sprsymrelfvlem 47452* | Lemma for sprsymrelf 47457 and sprsymrelfv 47456. (Contributed by AV, 19-Nov-2021.) |
| ⊢ (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) | ||
| Theorem | sprsymrelf1lem 47453* | Lemma for sprsymrelf1 47458. (Contributed by AV, 22-Nov-2021.) |
| ⊢ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 ⊆ 𝑏)) | ||
| Theorem | sprsymrelfolem1 47454* | Lemma 1 for sprsymrelfo 47459. (Contributed by AV, 22-Nov-2021.) |
| ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) | ||
| Theorem | sprsymrelfolem2 47455* | Lemma 2 for sprsymrelfo 47459. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (𝑥𝑅𝑦 ↔ ∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦})) | ||
| Theorem | sprsymrelfv 47456* | The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑋 ∈ 𝑃 → (𝐹‘𝑋) = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) | ||
| Theorem | sprsymrelf 47457* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃⟶𝑅 | ||
| Theorem | sprsymrelf1 47458* | The mapping 𝐹 is a one-to-one function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃–1-1→𝑅 | ||
| Theorem | sprsymrelfo 47459* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 onto the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–onto→𝑅) | ||
| Theorem | sprsymrelf1o 47460* | The mapping 𝐹 is a bijection between the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1-onto→𝑅) | ||
| Theorem | sprbisymrel 47461* | There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) | ||
| Theorem | sprsymrelen 47462* | The class 𝑃 of subsets of the set of pairs over a fixed set 𝑉 and the class 𝑅 of symmetric relations on the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅) | ||
Proper (unordered) pairs are unordered pairs with exactly 2 elements. The set of proper pairs with elements of a class 𝑉 is defined by {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}. For example, {1, 2} is a proper pair, because 1 ≠ 2 ( see 1ne2 12446). Examples for not proper unordered pairs are {1, 1} = {1} (see preqsn 4838), {1, V} = {1} (see prprc2 4742) or {V, V} = ∅ (see prprc 4743). | ||
| Theorem | prpair 47463* | Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) | ||
| Theorem | prproropf1olem0 47464 | Lemma 0 for prproropf1o 47469. Remark: 𝑂, the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, can alternatively be written as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ (1st ‘𝑥)𝑅(2nd ‘𝑥)} or even as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝑅}, by which the relationship between ordered and unordered pair is immediately visible. (Contributed by AV, 18-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) ⇒ ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) | ||
| Theorem | prproropf1olem1 47465* | Lemma 1 for prproropf1o 47469. (Contributed by AV, 12-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) | ||
| Theorem | prproropf1olem2 47466* | Lemma 2 for prproropf1o 47469. (Contributed by AV, 13-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑋 ∈ 𝑃) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ 𝑂) | ||
| Theorem | prproropf1olem3 47467* | Lemma 3 for prproropf1o 47469. (Contributed by AV, 13-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → (𝐹‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | ||
| Theorem | prproropf1olem4 47468* | Lemma 4 for prproropf1o 47469. (Contributed by AV, 14-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → ((𝐹‘𝑍) = (𝐹‘𝑊) → 𝑍 = 𝑊)) | ||
| Theorem | prproropf1o 47469* | There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) | ||
| Theorem | prproropen 47470* | The set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, are equinumerous. (Contributed by AV, 15-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 Or 𝑉) → 𝑂 ≈ 𝑃) | ||
| Theorem | prproropreud 47471* | There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ (𝜑 → 𝑅 Or 𝑉) & ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) | ||
| Theorem | pairreueq 47472* | Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) | ||
| Theorem | paireqne 47473* | Two sets are not equal iff there is exactly one proper pair whose elements are either one of these sets. (Contributed by AV, 27-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝑃 ∀𝑥 ∈ 𝑝 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ 𝐴 ≠ 𝐵)) | ||
| Syntax | cprpr 47474 | Extend class notation with set of proper unordered pairs. |
| class Pairsproper | ||
| Definition | df-prpr 47475* | Define the function which maps a set 𝑣 to the set of proper unordered pairs consisting of exactly two (different) elements of the set 𝑣. (Contributed by AV, 29-Apr-2023.) |
| ⊢ Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
| Theorem | prprval 47476* | The set of all proper unordered pairs over a given set 𝑉. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
| Theorem | prprvalpw 47477* | The set of all proper unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
| Theorem | prprelb 47478 | An element of the set of all proper unordered pairs over a given set 𝑉 is a subset of 𝑉 of size two. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) | ||
| Theorem | prprelprb 47479* | A set is an element of the set of all proper unordered pairs over a given set 𝑋 iff it is a pair of different elements of the set 𝑋. (Contributed by AV, 7-May-2023.) |
| ⊢ (𝑃 ∈ (Pairsproper‘𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) | ||
| Theorem | prprspr2 47480* | The set of all proper unordered pairs over a given set 𝑉 is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} | ||
| Theorem | prprsprreu 47481* | There is a unique proper unordered pair over a given set 𝑉 fulfilling a wff iff there is a unique unordered pair over 𝑉 of size two fulfilling this wff. (Contributed by AV, 30-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (∃!𝑝 ∈ (Pairsproper‘𝑉)𝜑 ↔ ∃!𝑝 ∈ (Pairs‘𝑉)((♯‘𝑝) = 2 ∧ 𝜑))) | ||
| Theorem | prprreueq 47482* | There is a unique proper unordered pair over a given set 𝑉 fulfilling a wff iff there is a unique subset of 𝑉 of size two fulfilling this wff. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (∃!𝑝 ∈ (Pairsproper‘𝑉)𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑))) | ||
| Theorem | sbcpr 47483* | The proper substitution of an unordered pair for a setvar variable corresponds to a proper substitution of each of its elements. (Contributed by AV, 7-Apr-2023.) |
| ⊢ (𝑝 = {𝑥, 𝑦} → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([{𝑎, 𝑏} / 𝑝]𝜑 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓) | ||
| Theorem | reupr 47484* | There is a unique unordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 7-Apr-2023.) |
| ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | ||
| Theorem | reuprpr 47485* | There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023.) |
| ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) | ||
| Theorem | poprelb 47486 | Equality for unordered pairs with partially ordered elements. (Contributed by AV, 9-Jul-2023.) |
| ⊢ (((Rel 𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | 2exopprim 47487 | The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023.) |
| ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) | ||
| Theorem | reuopreuprim 47488* | There is a unique unordered pair with ordered elements fulfilling a wff if there is a unique ordered pair fulfilling the wff. (Contributed by AV, 28-Jul-2023.) |
| ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃!𝑝 ∈ (Pairs‘𝑋)∃𝑎∃𝑏(𝑝 = {𝑎, 𝑏} ∧ 𝜑))) | ||
At first, the (sequence of) Fermat numbers FermatNo (the 𝑛-th Fermat number is denoted as (FermatNo‘𝑛)) is defined, see df-fmtno 47490, and basic theorems are provided. Afterwards, it is shown that the first five Fermat numbers are prime, the (first) five Fermat primes, see fmtnofz04prm 47539, but that the fifth Fermat number (counting starts at 0!) is not prime, see fmtno5nprm 47545. The fourth Fermat number (i.e., the fifth Fermat prime) (FermatNo‘4) = ;;;;65537 is currently the biggest number proven to be prime in set.mm, see 65537prm 47538 (previously, it was ;;;4001, see 4001prm 17162). Another important result of this section is Goldbach's theorem goldbachth 47509, showing that two different Fermut numbers are coprime. By this, it can be proven that there is an infinite number of primes, see prminf2 47550. Finally, it is shown that every prime of the form ((2↑𝑘) + 1) must be a Fermat number (i.e., a Fermat prime), see 2pwp1prmfmtno 47552. | ||
| Syntax | cfmtno 47489 | Extend class notation with the Fermat numbers. |
| class FermatNo | ||
| Definition | df-fmtno 47490 | Define the function that enumerates the Fermat numbers, see definition in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | ||
| Theorem | fmtno 47491 | The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | ||
| Theorem | fmtnoge3 47492 | Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) | ||
| Theorem | fmtnonn 47493 | Each Fermat number is a positive integer. (Contributed by AV, 26-Jul-2021.) (Proof shortened by AV, 4-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | ||
| Theorem | fmtnom1nn 47494 | A Fermat number minus one is a power of a power of two. (Contributed by AV, 29-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → ((FermatNo‘𝑁) − 1) = (2↑(2↑𝑁))) | ||
| Theorem | fmtnoodd 47495 | Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) | ||
| Theorem | fmtnorn 47496* | A Fermat number is a function value of the enumeration of the Fermat numbers. (Contributed by AV, 3-Aug-2021.) |
| ⊢ (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹) | ||
| Theorem | fmtnof1 47497 | The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021.) |
| ⊢ FermatNo:ℕ0–1-1→ℕ | ||
| Theorem | fmtnoinf 47498 | The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.) |
| ⊢ ran FermatNo ∉ Fin | ||
| Theorem | fmtnorec1 47499 | The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) | ||
| Theorem | sqrtpwpw2p 47500 | The floor of the square root of 2 to the power of 2 to the power of a positive integer plus a bounded nonnegative integer. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |