| Metamath
Proof Explorer Theorem List (p. 475 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fundcmpsurinjlem3 47401* | Lemma 3 for fundcmpsurinj 47410. (Contributed by AV, 3-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) | ||
| Theorem | imasetpreimafvbijlemf 47402* | Lemma for imasetpreimafvbij 47407: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) | ||
| Theorem | imasetpreimafvbijlemfv 47403* | Lemma for imasetpreimafvbij 47407: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) | ||
| Theorem | imasetpreimafvbijlemfv1 47404* | Lemma for imasetpreimafvbij 47407: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) | ||
| Theorem | imasetpreimafvbijlemf1 47405* | Lemma for imasetpreimafvbij 47407: the mapping 𝐻 is an injective function into the range of function 𝐹. (Contributed by AV, 9-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃–1-1→(𝐹 “ 𝐴)) | ||
| Theorem | imasetpreimafvbijlemfo 47406* | Lemma for imasetpreimafvbij 47407: the mapping 𝐻 is a function onto the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–onto→(𝐹 “ 𝐴)) | ||
| Theorem | imasetpreimafvbij 47407* | The mapping 𝐻 is a bijective function between the set 𝑃 of all preimages of values of function 𝐹 and the range of 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–1-1-onto→(𝐹 “ 𝐴)) | ||
| Theorem | fundcmpsurbijinjpreimafv 47408* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto 𝑃, a bijective function from 𝑃 and an injective function into the codomain of 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑃 ∧ ℎ:𝑃–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) | ||
| Theorem | fundcmpsurinjpreimafv 47409* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto 𝑃 and an injective function from 𝑃. (Contributed by AV, 12-Mar-2024.) (Proof shortened by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ(𝑔:𝐴–onto→𝑃 ∧ ℎ:𝑃–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
| Theorem | fundcmpsurinj 47410* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
| Theorem | fundcmpsurbijinj 47411* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective, a bijective and an injective function. (Contributed by AV, 23-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖∃𝑝∃𝑞((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) | ||
| Theorem | fundcmpsurinjimaid 47412* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto the image (𝐹 “ 𝐴) of the domain of 𝐹 and an injective function from the image (𝐹 “ 𝐴). (Contributed by AV, 17-Mar-2024.) |
| ⊢ 𝐼 = (𝐹 “ 𝐴) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) & ⊢ 𝐻 = ( I ↾ 𝐼) ⇒ ⊢ (𝐹:𝐴⟶𝐵 → (𝐺:𝐴–onto→𝐼 ∧ 𝐻:𝐼–1-1→𝐵 ∧ 𝐹 = (𝐻 ∘ 𝐺))) | ||
| Theorem | fundcmpsurinjALT 47413* | Alternate proof of fundcmpsurinj 47410, based on fundcmpsurinjimaid 47412: Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
Based on the theorems of the fourierdlem* series of GS's mathbox. | ||
| Syntax | ciccp 47414 | Extend class notation with the partitions of a closed interval of extended reals. |
| class RePart | ||
| Definition | df-iccp 47415* | Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020.) |
| ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
| Theorem | iccpval 47416* | Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
| ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
| Theorem | iccpart 47417* | A special partition. Corresponds to fourierdlem2 46107 in GS's mathbox. (Contributed by AV, 9-Jul-2020.) |
| ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | ||
| Theorem | iccpartimp 47418 | Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | ||
| Theorem | iccpartres 47419 | The restriction of a partition is a partition. (Contributed by AV, 16-Jul-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘(𝑀 + 1))) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀)) | ||
| Theorem | iccpartxr 47420 | If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) | ||
| Theorem | iccpartgtprec 47421 | If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) | ||
| Theorem | iccpartipre 47422 | If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) | ||
| Theorem | iccpartiltu 47423* | If there is a partition, then all intermediate points are strictly less than the upper bound. (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
| Theorem | iccpartigtl 47424* | If there is a partition, then all intermediate points are strictly greater than the lower bound. (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
| Theorem | iccpartlt 47425 | If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 46116 in GS's mathbox. (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) | ||
| Theorem | iccpartltu 47426* | If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
| Theorem | iccpartgtl 47427* | If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
| Theorem | iccpartgt 47428* | If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))) | ||
| Theorem | iccpartleu 47429* | If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) | ||
| Theorem | iccpartgel 47430* | If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑖)) | ||
| Theorem | iccpartrn 47431 | If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
| Theorem | iccpartf 47432 | The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 46120 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → 𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃‘𝑀))) | ||
| Theorem | iccpartel 47433 | If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ (0...𝑀)) → (𝑃‘𝐼) ∈ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
| Theorem | iccelpart 47434* | An element of any partitioned half-open interval of extended reals is an element of a part of this partition. (Contributed by AV, 18-Jul-2020.) |
| ⊢ (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) | ||
| Theorem | iccpartiun 47435* | A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝑃‘0)[,)(𝑃‘𝑀)) = ∪ 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
| Theorem | icceuelpartlem 47436 | Lemma for icceuelpart 47437. (Contributed by AV, 19-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃‘𝐽)))) | ||
| Theorem | icceuelpart 47437* | An element of a partitioned half-open interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
| Theorem | iccpartdisj 47438* | The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → Disj 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
| Theorem | iccpartnel 47439 | A point of a partition is not an element of any open interval determined by the partition. Corresponds to fourierdlem12 46117 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 8-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑃) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑃‘𝐼)(,)(𝑃‘(𝐼 + 1)))) | ||
| Theorem | fargshiftfv 47440* | If a class is a function, then the values of the "shifted function" correspond to the function values of the class. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑋 ∈ (0..^𝑁) → (𝐺‘𝑋) = (𝐹‘(𝑋 + 1)))) | ||
| Theorem | fargshiftf 47441* | If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) | ||
| Theorem | fargshiftf1 47442* | If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸) | ||
| Theorem | fargshiftfo 47443* | If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸) | ||
| Theorem | fargshiftfva 47444* | The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) | ||
| Theorem | lswn0 47445 | The last symbol of a not empty word exists. The empty set must be excluded as symbol, because otherwise, it cannot be distinguished between valid cases (∅ is the last symbol) and invalid cases (∅ means that no last symbol exists. This is because of the special definition of a function in set.mm. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅) | ||
| Syntax | wich 47446 | Extend wff notation to include the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. Read this notation as "𝑥 and 𝑦 are interchangeable in wff 𝜑". |
| wff [𝑥⇄𝑦]𝜑 | ||
| Definition | df-ich 47447* | Define the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. For an alternate definition using implicit substitution and a temporary setvar variable see ichcircshi 47455. Another, equivalent definition using two temporary setvar variables is provided in dfich2 47459. (Contributed by AV, 29-Jul-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | nfich1 47448 | The first interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.) |
| ⊢ Ⅎ𝑥[𝑥⇄𝑦]𝜑 | ||
| Theorem | nfich2 47449 | The second interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.) |
| ⊢ Ⅎ𝑦[𝑥⇄𝑦]𝜑 | ||
| Theorem | ichv 47450* | Setvar variables are interchangeable in a wff they do not appear in. (Contributed by SN, 23-Nov-2023.) |
| ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichf 47451 | Setvar variables are interchangeable in a wff they are not free in. (Contributed by SN, 23-Nov-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichid 47452 | A setvar variable is always interchangeable with itself. (Contributed by AV, 29-Jul-2023.) |
| ⊢ [𝑥⇄𝑥]𝜑 | ||
| Theorem | icht 47453 | A theorem is interchangeable. (Contributed by SN, 4-May-2024.) |
| ⊢ 𝜑 ⇒ ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichbidv 47454* | Formula building rule for interchangeability (deduction). (Contributed by SN, 4-May-2024.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑥⇄𝑦]𝜓 ↔ [𝑥⇄𝑦]𝜒)) | ||
| Theorem | ichcircshi 47455* | The setvar variables are interchangeable if they can be circularily shifted using a third setvar variable, using implicit substitution. (Contributed by AV, 29-Jul-2023.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜑)) ⇒ ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichan 47456 | If two setvar variables are interchangeable in two wffs, then they are interchangeable in the conjunction of these two wffs. Notice that the reverse implication is not necessarily true. Corresponding theorems will hold for other commutative operations, too. (Contributed by AV, 31-Jul-2023.) Use df-ich 47447 instead of dfich2 47459 to reduce axioms. (Revised by SN, 4-May-2024.) |
| ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 ∧ 𝜓)) | ||
| Theorem | ichn 47457 | Negation does not affect interchangeability. (Contributed by SN, 30-Aug-2023.) |
| ⊢ ([𝑎⇄𝑏]𝜑 ↔ [𝑎⇄𝑏] ¬ 𝜑) | ||
| Theorem | ichim 47458 | Formula building rule for implication in interchangeability. (Contributed by SN, 4-May-2024.) |
| ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 → 𝜓)) | ||
| Theorem | dfich2 47459* | Alternate definition of the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. (Contributed by AV and WL, 6-Aug-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) | ||
| Theorem | ichcom 47460* | The interchangeability of setvar variables is commutative. (Contributed by AV, 20-Aug-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑦⇄𝑥]𝜓) | ||
| Theorem | ichbi12i 47461* | Equivalence for interchangeable setvar variables. (Contributed by AV, 29-Jul-2023.) |
| ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑎⇄𝑏]𝜒) | ||
| Theorem | icheqid 47462 | In an equality for the same setvar variable, the setvar variable is interchangeable by itself. Special case of ichid 47452 and icheq 47463 without distinct variables restriction. (Contributed by AV, 29-Jul-2023.) |
| ⊢ [𝑥⇄𝑥]𝑥 = 𝑥 | ||
| Theorem | icheq 47463* | In an equality of setvar variables, the setvar variables are interchangeable. (Contributed by AV, 29-Jul-2023.) |
| ⊢ [𝑥⇄𝑦]𝑥 = 𝑦 | ||
| Theorem | ichnfimlem 47464* | Lemma for ichnfim 47465: A substitution for a nonfree variable has no effect. (Contributed by Wolf Lammen, 6-Aug-2023.) Avoid ax-13 2370. (Revised by GG, 1-May-2024.) |
| ⊢ (∀𝑦Ⅎ𝑥𝜑 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | ||
| Theorem | ichnfim 47465* | If in an interchangeability context 𝑥 is not free in 𝜑, the same holds for 𝑦. (Contributed by Wolf Lammen, 6-Aug-2023.) (Revised by AV, 23-Sep-2023.) |
| ⊢ ((∀𝑦Ⅎ𝑥𝜑 ∧ [𝑥⇄𝑦]𝜑) → ∀𝑥Ⅎ𝑦𝜑) | ||
| Theorem | ichnfb 47466* | If 𝑥 and 𝑦 are interchangeable in 𝜑, they are both free or both not free in 𝜑. (Contributed by Wolf Lammen, 6-Aug-2023.) (Revised by AV, 23-Sep-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜑 → (∀𝑥Ⅎ𝑦𝜑 ↔ ∀𝑦Ⅎ𝑥𝜑)) | ||
| Theorem | ichal 47467* | Move a universal quantifier inside interchangeability. (Contributed by SN, 30-Aug-2023.) |
| ⊢ (∀𝑥[𝑎⇄𝑏]𝜑 → [𝑎⇄𝑏]∀𝑥𝜑) | ||
| Theorem | ich2al 47468 | Two setvar variables are always interchangeable when there are two universal quantifiers. (Contributed by SN, 23-Nov-2023.) |
| ⊢ [𝑥⇄𝑦]∀𝑥∀𝑦𝜑 | ||
| Theorem | ich2ex 47469 | Two setvar variables are always interchangeable when there are two existential quantifiers. (Contributed by SN, 23-Nov-2023.) |
| ⊢ [𝑥⇄𝑦]∃𝑥∃𝑦𝜑 | ||
| Theorem | ichexmpl1 47470* | Example for interchangeable setvar variables in a statement of predicate calculus with equality. (Contributed by AV, 31-Jul-2023.) |
| ⊢ [𝑎⇄𝑏]∃𝑎∃𝑏∃𝑐(𝑎 = 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) | ||
| Theorem | ichexmpl2 47471* | Example for interchangeable setvar variables in an arithmetic expression. (Contributed by AV, 31-Jul-2023.) |
| ⊢ [𝑎⇄𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)) | ||
| Theorem | ich2exprop 47472* | If the setvar variables are interchangeable in a wff, there is an ordered pair fulfilling the wff iff there is an unordered pair fulfilling the wff. (Contributed by AV, 16-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ [𝑎⇄𝑏]𝜑) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑) ↔ ∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑))) | ||
| Theorem | ichnreuop 47473* | If the setvar variables are interchangeable in a wff, there is never a unique ordered pair with different components fulfilling the wff (because if 〈𝑎, 𝑏〉 fulfils the wff, then also 〈𝑏, 𝑎〉 fulfils the wff). (Contributed by AV, 27-Aug-2023.) |
| ⊢ ([𝑎⇄𝑏]𝜑 → ¬ ∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑎 ≠ 𝑏 ∧ 𝜑)) | ||
| Theorem | ichreuopeq 47474* | If the setvar variables are interchangeable in a wff, and there is a unique ordered pair fulfilling the wff, then both setvar variables must be equal. (Contributed by AV, 28-Aug-2023.) |
| ⊢ ([𝑎⇄𝑏]𝜑 → (∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏(𝑎 = 𝑏 ∧ 𝜑))) | ||
| Theorem | sprid 47475 | Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| ⊢ {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | ||
| Theorem | elsprel 47476* | An unordered pair is an element of all unordered pairs. At least one of the two elements of the unordered pair must be a set. Otherwise, the unordered pair would be the empty set, see prprc 4731, which is not an element of all unordered pairs, see spr0nelg 47477. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | spr0nelg 47477* | The empty set is not an element of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | ||
| Syntax | cspr 47478 | Extend class notation with set of pairs. |
| class Pairs | ||
| Definition | df-spr 47479* | Define the function which maps a set 𝑣 to the set of pairs consisting of elements of the set 𝑣. (Contributed by AV, 21-Nov-2021.) |
| ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprval 47480* | The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprvalpw 47481* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprssspr 47482* | The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | ||
| Theorem | spr0el 47483 | The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ∅ ∉ (Pairs‘𝑉) | ||
| Theorem | sprvalpwn0 47484* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprel 47485* | An element of the set of all unordered pairs over a given set 𝑉 is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏}) | ||
| Theorem | prssspr 47486* | An element of a subset of the set of all unordered pairs over a given set 𝑉, is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ ((𝑃 ⊆ (Pairs‘𝑉) ∧ 𝑋 ∈ 𝑃) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏}) | ||
| Theorem | prelspr 47487 | An unordered pair of elements of a fixed set 𝑉 belongs to the set of all unordered pairs over the set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉)) | ||
| Theorem | prsprel 47488 | The elements of a pair from the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | ||
| Theorem | prsssprel 47489 | The elements of a pair from a subset of the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝑃 ⊆ (Pairs‘𝑉) ∧ {𝑋, 𝑌} ∈ 𝑃 ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | ||
| Theorem | sprvalpwle2 47490* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 24-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) | ||
| Theorem | sprsymrelfvlem 47491* | Lemma for sprsymrelf 47496 and sprsymrelfv 47495. (Contributed by AV, 19-Nov-2021.) |
| ⊢ (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) | ||
| Theorem | sprsymrelf1lem 47492* | Lemma for sprsymrelf1 47497. (Contributed by AV, 22-Nov-2021.) |
| ⊢ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 ⊆ 𝑏)) | ||
| Theorem | sprsymrelfolem1 47493* | Lemma 1 for sprsymrelfo 47498. (Contributed by AV, 22-Nov-2021.) |
| ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) | ||
| Theorem | sprsymrelfolem2 47494* | Lemma 2 for sprsymrelfo 47498. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (𝑥𝑅𝑦 ↔ ∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦})) | ||
| Theorem | sprsymrelfv 47495* | The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑋 ∈ 𝑃 → (𝐹‘𝑋) = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) | ||
| Theorem | sprsymrelf 47496* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃⟶𝑅 | ||
| Theorem | sprsymrelf1 47497* | The mapping 𝐹 is a one-to-one function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃–1-1→𝑅 | ||
| Theorem | sprsymrelfo 47498* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 onto the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–onto→𝑅) | ||
| Theorem | sprsymrelf1o 47499* | The mapping 𝐹 is a bijection between the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1-onto→𝑅) | ||
| Theorem | sprbisymrel 47500* | There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |