| Metamath
Proof Explorer Theorem List (p. 475 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iccpart 47401* | A special partition. Corresponds to fourierdlem2 46091 in GS's mathbox. (Contributed by AV, 9-Jul-2020.) |
| ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | ||
| Theorem | iccpartimp 47402 | Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | ||
| Theorem | iccpartres 47403 | The restriction of a partition is a partition. (Contributed by AV, 16-Jul-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘(𝑀 + 1))) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀)) | ||
| Theorem | iccpartxr 47404 | If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) | ||
| Theorem | iccpartgtprec 47405 | If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) | ||
| Theorem | iccpartipre 47406 | If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) | ||
| Theorem | iccpartiltu 47407* | If there is a partition, then all intermediate points are strictly less than the upper bound. (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
| Theorem | iccpartigtl 47408* | If there is a partition, then all intermediate points are strictly greater than the lower bound. (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
| Theorem | iccpartlt 47409 | If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 46100 in GS's mathbox. (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) | ||
| Theorem | iccpartltu 47410* | If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
| Theorem | iccpartgtl 47411* | If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
| Theorem | iccpartgt 47412* | If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))) | ||
| Theorem | iccpartleu 47413* | If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) | ||
| Theorem | iccpartgel 47414* | If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑖)) | ||
| Theorem | iccpartrn 47415 | If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
| Theorem | iccpartf 47416 | The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 46104 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → 𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃‘𝑀))) | ||
| Theorem | iccpartel 47417 | If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ (0...𝑀)) → (𝑃‘𝐼) ∈ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
| Theorem | iccelpart 47418* | An element of any partitioned half-open interval of extended reals is an element of a part of this partition. (Contributed by AV, 18-Jul-2020.) |
| ⊢ (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) | ||
| Theorem | iccpartiun 47419* | A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝑃‘0)[,)(𝑃‘𝑀)) = ∪ 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
| Theorem | icceuelpartlem 47420 | Lemma for icceuelpart 47421. (Contributed by AV, 19-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃‘𝐽)))) | ||
| Theorem | icceuelpart 47421* | An element of a partitioned half-open interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
| Theorem | iccpartdisj 47422* | The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → Disj 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
| Theorem | iccpartnel 47423 | A point of a partition is not an element of any open interval determined by the partition. Corresponds to fourierdlem12 46101 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 8-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑃) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑃‘𝐼)(,)(𝑃‘(𝐼 + 1)))) | ||
| Theorem | fargshiftfv 47424* | If a class is a function, then the values of the "shifted function" correspond to the function values of the class. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑋 ∈ (0..^𝑁) → (𝐺‘𝑋) = (𝐹‘(𝑋 + 1)))) | ||
| Theorem | fargshiftf 47425* | If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) | ||
| Theorem | fargshiftf1 47426* | If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸) | ||
| Theorem | fargshiftfo 47427* | If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸) | ||
| Theorem | fargshiftfva 47428* | The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) | ||
| Theorem | lswn0 47429 | The last symbol of a nonempty word exists. The empty set must be excluded as symbol, because otherwise, it cannot be distinguished between valid cases (∅ is the last symbol) and invalid cases (∅ means that no last symbol exists). This is because of the special definition of a function in set.mm. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅) | ||
| Syntax | wich 47430 | Extend wff notation to include the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. Read this notation as "𝑥 and 𝑦 are interchangeable in wff 𝜑". |
| wff [𝑥⇄𝑦]𝜑 | ||
| Definition | df-ich 47431* | Define the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. For an alternate definition using implicit substitution and a temporary setvar variable see ichcircshi 47439. Another, equivalent definition using two temporary setvar variables is provided in dfich2 47443. (Contributed by AV, 29-Jul-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | nfich1 47432 | The first interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.) |
| ⊢ Ⅎ𝑥[𝑥⇄𝑦]𝜑 | ||
| Theorem | nfich2 47433 | The second interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023.) |
| ⊢ Ⅎ𝑦[𝑥⇄𝑦]𝜑 | ||
| Theorem | ichv 47434* | Setvar variables are interchangeable in a wff they do not appear in. (Contributed by SN, 23-Nov-2023.) |
| ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichf 47435 | Setvar variables are interchangeable in a wff they are not free in. (Contributed by SN, 23-Nov-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichid 47436 | A setvar variable is always interchangeable with itself. (Contributed by AV, 29-Jul-2023.) |
| ⊢ [𝑥⇄𝑥]𝜑 | ||
| Theorem | icht 47437 | A theorem is interchangeable. (Contributed by SN, 4-May-2024.) |
| ⊢ 𝜑 ⇒ ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichbidv 47438* | Formula building rule for interchangeability (deduction). (Contributed by SN, 4-May-2024.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑥⇄𝑦]𝜓 ↔ [𝑥⇄𝑦]𝜒)) | ||
| Theorem | ichcircshi 47439* | The setvar variables are interchangeable if they can be circularily shifted using a third setvar variable, using implicit substitution. (Contributed by AV, 29-Jul-2023.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜑)) ⇒ ⊢ [𝑥⇄𝑦]𝜑 | ||
| Theorem | ichan 47440 | If two setvar variables are interchangeable in two wffs, then they are interchangeable in the conjunction of these two wffs. Notice that the reverse implication is not necessarily true. Corresponding theorems will hold for other commutative operations, too. (Contributed by AV, 31-Jul-2023.) Use df-ich 47431 instead of dfich2 47443 to reduce axioms. (Revised by SN, 4-May-2024.) |
| ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 ∧ 𝜓)) | ||
| Theorem | ichn 47441 | Negation does not affect interchangeability. (Contributed by SN, 30-Aug-2023.) |
| ⊢ ([𝑎⇄𝑏]𝜑 ↔ [𝑎⇄𝑏] ¬ 𝜑) | ||
| Theorem | ichim 47442 | Formula building rule for implication in interchangeability. (Contributed by SN, 4-May-2024.) |
| ⊢ (([𝑎⇄𝑏]𝜑 ∧ [𝑎⇄𝑏]𝜓) → [𝑎⇄𝑏](𝜑 → 𝜓)) | ||
| Theorem | dfich2 47443* | Alternate definition of the property of a wff 𝜑 that the setvar variables 𝑥 and 𝑦 are interchangeable. (Contributed by AV and WL, 6-Aug-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑎∀𝑏([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑥][𝑎 / 𝑦]𝜑)) | ||
| Theorem | ichcom 47444* | The interchangeability of setvar variables is commutative. (Contributed by AV, 20-Aug-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑦⇄𝑥]𝜓) | ||
| Theorem | ichbi12i 47445* | Equivalence for interchangeable setvar variables. (Contributed by AV, 29-Jul-2023.) |
| ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑎⇄𝑏]𝜒) | ||
| Theorem | icheqid 47446 | In an equality for the same setvar variable, the setvar variable is interchangeable by itself. Special case of ichid 47436 and icheq 47447 without distinct variables restriction. (Contributed by AV, 29-Jul-2023.) |
| ⊢ [𝑥⇄𝑥]𝑥 = 𝑥 | ||
| Theorem | icheq 47447* | In an equality of setvar variables, the setvar variables are interchangeable. (Contributed by AV, 29-Jul-2023.) |
| ⊢ [𝑥⇄𝑦]𝑥 = 𝑦 | ||
| Theorem | ichnfimlem 47448* | Lemma for ichnfim 47449: A substitution for a nonfree variable has no effect. (Contributed by Wolf Lammen, 6-Aug-2023.) Avoid ax-13 2370. (Revised by GG, 1-May-2024.) |
| ⊢ (∀𝑦Ⅎ𝑥𝜑 → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | ||
| Theorem | ichnfim 47449* | If in an interchangeability context 𝑥 is not free in 𝜑, the same holds for 𝑦. (Contributed by Wolf Lammen, 6-Aug-2023.) (Revised by AV, 23-Sep-2023.) |
| ⊢ ((∀𝑦Ⅎ𝑥𝜑 ∧ [𝑥⇄𝑦]𝜑) → ∀𝑥Ⅎ𝑦𝜑) | ||
| Theorem | ichnfb 47450* | If 𝑥 and 𝑦 are interchangeable in 𝜑, they are both free or both not free in 𝜑. (Contributed by Wolf Lammen, 6-Aug-2023.) (Revised by AV, 23-Sep-2023.) |
| ⊢ ([𝑥⇄𝑦]𝜑 → (∀𝑥Ⅎ𝑦𝜑 ↔ ∀𝑦Ⅎ𝑥𝜑)) | ||
| Theorem | ichal 47451* | Move a universal quantifier inside interchangeability. (Contributed by SN, 30-Aug-2023.) |
| ⊢ (∀𝑥[𝑎⇄𝑏]𝜑 → [𝑎⇄𝑏]∀𝑥𝜑) | ||
| Theorem | ich2al 47452 | Two setvar variables are always interchangeable when there are two universal quantifiers. (Contributed by SN, 23-Nov-2023.) |
| ⊢ [𝑥⇄𝑦]∀𝑥∀𝑦𝜑 | ||
| Theorem | ich2ex 47453 | Two setvar variables are always interchangeable when there are two existential quantifiers. (Contributed by SN, 23-Nov-2023.) |
| ⊢ [𝑥⇄𝑦]∃𝑥∃𝑦𝜑 | ||
| Theorem | ichexmpl1 47454* | Example for interchangeable setvar variables in a statement of predicate calculus with equality. (Contributed by AV, 31-Jul-2023.) |
| ⊢ [𝑎⇄𝑏]∃𝑎∃𝑏∃𝑐(𝑎 = 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) | ||
| Theorem | ichexmpl2 47455* | Example for interchangeable setvar variables in an arithmetic expression. (Contributed by AV, 31-Jul-2023.) |
| ⊢ [𝑎⇄𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)) | ||
| Theorem | ich2exprop 47456* | If the setvar variables are interchangeable in a wff, there is an ordered pair fulfilling the wff iff there is an unordered pair fulfilling the wff. (Contributed by AV, 16-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ [𝑎⇄𝑏]𝜑) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑) ↔ ∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑))) | ||
| Theorem | ichnreuop 47457* | If the setvar variables are interchangeable in a wff, there is never a unique ordered pair with different components fulfilling the wff (because if 〈𝑎, 𝑏〉 fulfils the wff, then also 〈𝑏, 𝑎〉 fulfils the wff). (Contributed by AV, 27-Aug-2023.) |
| ⊢ ([𝑎⇄𝑏]𝜑 → ¬ ∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑎 ≠ 𝑏 ∧ 𝜑)) | ||
| Theorem | ichreuopeq 47458* | If the setvar variables are interchangeable in a wff, and there is a unique ordered pair fulfilling the wff, then both setvar variables must be equal. (Contributed by AV, 28-Aug-2023.) |
| ⊢ ([𝑎⇄𝑏]𝜑 → (∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏(𝑎 = 𝑏 ∧ 𝜑))) | ||
| Theorem | sprid 47459 | Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| ⊢ {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | ||
| Theorem | elsprel 47460* | An unordered pair is an element of all unordered pairs. At least one of the two elements of the unordered pair must be a set. Otherwise, the unordered pair would be the empty set, see prprc 4721, which is not an element of all unordered pairs, see spr0nelg 47461. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | spr0nelg 47461* | The empty set is not an element of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ∅ ∉ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | ||
| Syntax | cspr 47462 | Extend class notation with set of pairs. |
| class Pairs | ||
| Definition | df-spr 47463* | Define the function which maps a set 𝑣 to the set of pairs consisting of elements of the set 𝑣. (Contributed by AV, 21-Nov-2021.) |
| ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprval 47464* | The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprvalpw 47465* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprssspr 47466* | The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | ||
| Theorem | spr0el 47467 | The empty set is not an unordered pair over any set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ∅ ∉ (Pairs‘𝑉) | ||
| Theorem | sprvalpwn0 47468* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | ||
| Theorem | sprel 47469* | An element of the set of all unordered pairs over a given set 𝑉 is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏}) | ||
| Theorem | prssspr 47470* | An element of a subset of the set of all unordered pairs over a given set 𝑉, is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ ((𝑃 ⊆ (Pairs‘𝑉) ∧ 𝑋 ∈ 𝑃) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏}) | ||
| Theorem | prelspr 47471 | An unordered pair of elements of a fixed set 𝑉 belongs to the set of all unordered pairs over the set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} ∈ (Pairs‘𝑉)) | ||
| Theorem | prsprel 47472 | The elements of a pair from the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | ||
| Theorem | prsssprel 47473 | The elements of a pair from a subset of the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝑃 ⊆ (Pairs‘𝑉) ∧ {𝑋, 𝑌} ∈ 𝑃 ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | ||
| Theorem | sprvalpwle2 47474* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 24-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) | ||
| Theorem | sprsymrelfvlem 47475* | Lemma for sprsymrelf 47480 and sprsymrelfv 47479. (Contributed by AV, 19-Nov-2021.) |
| ⊢ (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) | ||
| Theorem | sprsymrelf1lem 47476* | Lemma for sprsymrelf1 47481. (Contributed by AV, 22-Nov-2021.) |
| ⊢ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 ⊆ 𝑏)) | ||
| Theorem | sprsymrelfolem1 47477* | Lemma 1 for sprsymrelfo 47482. (Contributed by AV, 22-Nov-2021.) |
| ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) | ||
| Theorem | sprsymrelfolem2 47478* | Lemma 2 for sprsymrelfo 47482. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (𝑥𝑅𝑦 ↔ ∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦})) | ||
| Theorem | sprsymrelfv 47479* | The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑋 ∈ 𝑃 → (𝐹‘𝑋) = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) | ||
| Theorem | sprsymrelf 47480* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃⟶𝑅 | ||
| Theorem | sprsymrelf1 47481* | The mapping 𝐹 is a one-to-one function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃–1-1→𝑅 | ||
| Theorem | sprsymrelfo 47482* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 onto the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–onto→𝑅) | ||
| Theorem | sprsymrelf1o 47483* | The mapping 𝐹 is a bijection between the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1-onto→𝑅) | ||
| Theorem | sprbisymrel 47484* | There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) | ||
| Theorem | sprsymrelen 47485* | The class 𝑃 of subsets of the set of pairs over a fixed set 𝑉 and the class 𝑅 of symmetric relations on the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅) | ||
Proper (unordered) pairs are unordered pairs with exactly 2 elements. The set of proper pairs with elements of a class 𝑉 is defined by {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}. For example, {1, 2} is a proper pair, because 1 ≠ 2 ( see 1ne2 12349). Examples for not proper unordered pairs are {1, 1} = {1} (see preqsn 4816), {1, V} = {1} (see prprc2 4720) or {V, V} = ∅ (see prprc 4721). | ||
| Theorem | prpair 47486* | Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) | ||
| Theorem | prproropf1olem0 47487 | Lemma 0 for prproropf1o 47492. Remark: 𝑂, the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, can alternatively be written as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ (1st ‘𝑥)𝑅(2nd ‘𝑥)} or even as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝑅}, by which the relationship between ordered and unordered pair is immediately visible. (Contributed by AV, 18-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) ⇒ ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) | ||
| Theorem | prproropf1olem1 47488* | Lemma 1 for prproropf1o 47492. (Contributed by AV, 12-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) | ||
| Theorem | prproropf1olem2 47489* | Lemma 2 for prproropf1o 47492. (Contributed by AV, 13-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑋 ∈ 𝑃) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ 𝑂) | ||
| Theorem | prproropf1olem3 47490* | Lemma 3 for prproropf1o 47492. (Contributed by AV, 13-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → (𝐹‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | ||
| Theorem | prproropf1olem4 47491* | Lemma 4 for prproropf1o 47492. (Contributed by AV, 14-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → ((𝐹‘𝑍) = (𝐹‘𝑊) → 𝑍 = 𝑊)) | ||
| Theorem | prproropf1o 47492* | There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) | ||
| Theorem | prproropen 47493* | The set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, are equinumerous. (Contributed by AV, 15-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 Or 𝑉) → 𝑂 ≈ 𝑃) | ||
| Theorem | prproropreud 47494* | There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ (𝜑 → 𝑅 Or 𝑉) & ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) | ||
| Theorem | pairreueq 47495* | Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) | ||
| Theorem | paireqne 47496* | Two sets are not equal iff there is exactly one proper pair whose elements are either one of these sets. (Contributed by AV, 27-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝑃 ∀𝑥 ∈ 𝑝 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ 𝐴 ≠ 𝐵)) | ||
| Syntax | cprpr 47497 | Extend class notation with set of proper unordered pairs. |
| class Pairsproper | ||
| Definition | df-prpr 47498* | Define the function which maps a set 𝑣 to the set of proper unordered pairs consisting of exactly two (different) elements of the set 𝑣. (Contributed by AV, 29-Apr-2023.) |
| ⊢ Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
| Theorem | prprval 47499* | The set of all proper unordered pairs over a given set 𝑉. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
| Theorem | prprvalpw 47500* | The set of all proper unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |