Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spheres Structured version   Visualization version   GIF version

Theorem spheres 47704
Description: The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐡 = (Baseβ€˜π‘Š)
spheres.l 𝑆 = (Sphereβ€˜π‘Š)
spheres.d 𝐷 = (distβ€˜π‘Š)
Assertion
Ref Expression
spheres (π‘Š ∈ 𝑉 β†’ 𝑆 = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
Distinct variable groups:   𝐡,𝑝,π‘Ÿ,π‘₯   π‘Š,𝑝,π‘Ÿ,π‘₯
Allowed substitution hints:   𝐷(π‘₯,π‘Ÿ,𝑝)   𝑆(π‘₯,π‘Ÿ,𝑝)   𝑉(π‘₯,π‘Ÿ,𝑝)

Proof of Theorem spheres
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 spheres.l . . 3 𝑆 = (Sphereβ€˜π‘Š)
21a1i 11 . 2 (π‘Š ∈ 𝑉 β†’ 𝑆 = (Sphereβ€˜π‘Š))
3 df-sph 47688 . . 3 Sphere = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ}))
4 fveq2 6885 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
5 spheres.b . . . . . . 7 𝐡 = (Baseβ€˜π‘Š)
65eqcomi 2735 . . . . . 6 (Baseβ€˜π‘Š) = 𝐡
76a1i 11 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘Š) = 𝐡)
84, 7eqtrd 2766 . . . 4 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝐡)
9 eqidd 2727 . . . 4 (𝑀 = π‘Š β†’ (0[,]+∞) = (0[,]+∞))
10 fveq2 6885 . . . . . . . 8 (𝑀 = π‘Š β†’ (distβ€˜π‘€) = (distβ€˜π‘Š))
11 spheres.d . . . . . . . . . 10 𝐷 = (distβ€˜π‘Š)
1211eqcomi 2735 . . . . . . . . 9 (distβ€˜π‘Š) = 𝐷
1312a1i 11 . . . . . . . 8 (𝑀 = π‘Š β†’ (distβ€˜π‘Š) = 𝐷)
1410, 13eqtrd 2766 . . . . . . 7 (𝑀 = π‘Š β†’ (distβ€˜π‘€) = 𝐷)
1514oveqd 7422 . . . . . 6 (𝑀 = π‘Š β†’ (𝑝(distβ€˜π‘€)π‘₯) = (𝑝𝐷π‘₯))
1615eqeq1d 2728 . . . . 5 (𝑀 = π‘Š β†’ ((𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ ↔ (𝑝𝐷π‘₯) = π‘Ÿ))
178, 16rabeqbidv 3443 . . . 4 (𝑀 = π‘Š β†’ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ} = {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ})
188, 9, 17mpoeq123dv 7480 . . 3 (𝑀 = π‘Š β†’ (π‘₯ ∈ (Baseβ€˜π‘€), π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ}) = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
19 elex 3487 . . 3 (π‘Š ∈ 𝑉 β†’ π‘Š ∈ V)
20 fvex 6898 . . . . . 6 (Baseβ€˜π‘Š) ∈ V
215, 20eqeltri 2823 . . . . 5 𝐡 ∈ V
22 ovex 7438 . . . . 5 (0[,]+∞) ∈ V
2321, 22mpoex 8065 . . . 4 (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}) ∈ V
2423a1i 11 . . 3 (π‘Š ∈ 𝑉 β†’ (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}) ∈ V)
253, 18, 19, 24fvmptd3 7015 . 2 (π‘Š ∈ 𝑉 β†’ (Sphereβ€˜π‘Š) = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
262, 25eqtrd 2766 1 (π‘Š ∈ 𝑉 β†’ 𝑆 = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {crab 3426  Vcvv 3468  β€˜cfv 6537  (class class class)co 7405   ∈ cmpo 7407  0cc0 11112  +∞cpnf 11249  [,]cicc 13333  Basecbs 17153  distcds 17215  Spherecsph 47686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-sph 47688
This theorem is referenced by:  sphere  47705  rrxsphere  47706
  Copyright terms: Public domain W3C validator