Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spheres Structured version   Visualization version   GIF version

Theorem spheres 48735
Description: The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐵 = (Base‘𝑊)
spheres.l 𝑆 = (Sphere‘𝑊)
spheres.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
spheres (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
Distinct variable groups:   𝐵,𝑝,𝑟,𝑥   𝑊,𝑝,𝑟,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑟,𝑝)   𝑆(𝑥,𝑟,𝑝)   𝑉(𝑥,𝑟,𝑝)

Proof of Theorem spheres
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 spheres.l . . 3 𝑆 = (Sphere‘𝑊)
21a1i 11 . 2 (𝑊𝑉𝑆 = (Sphere‘𝑊))
3 df-sph 48719 . . 3 Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}))
4 fveq2 6826 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
5 spheres.b . . . . . . 7 𝐵 = (Base‘𝑊)
65eqcomi 2738 . . . . . 6 (Base‘𝑊) = 𝐵
76a1i 11 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑊) = 𝐵)
84, 7eqtrd 2764 . . . 4 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
9 eqidd 2730 . . . 4 (𝑤 = 𝑊 → (0[,]+∞) = (0[,]+∞))
10 fveq2 6826 . . . . . . . 8 (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊))
11 spheres.d . . . . . . . . . 10 𝐷 = (dist‘𝑊)
1211eqcomi 2738 . . . . . . . . 9 (dist‘𝑊) = 𝐷
1312a1i 11 . . . . . . . 8 (𝑤 = 𝑊 → (dist‘𝑊) = 𝐷)
1410, 13eqtrd 2764 . . . . . . 7 (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷)
1514oveqd 7370 . . . . . 6 (𝑤 = 𝑊 → (𝑝(dist‘𝑤)𝑥) = (𝑝𝐷𝑥))
1615eqeq1d 2731 . . . . 5 (𝑤 = 𝑊 → ((𝑝(dist‘𝑤)𝑥) = 𝑟 ↔ (𝑝𝐷𝑥) = 𝑟))
178, 16rabeqbidv 3415 . . . 4 (𝑤 = 𝑊 → {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})
188, 9, 17mpoeq123dv 7428 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}) = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
19 elex 3459 . . 3 (𝑊𝑉𝑊 ∈ V)
20 fvex 6839 . . . . . 6 (Base‘𝑊) ∈ V
215, 20eqeltri 2824 . . . . 5 𝐵 ∈ V
22 ovex 7386 . . . . 5 (0[,]+∞) ∈ V
2321, 22mpoex 8021 . . . 4 (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V
2423a1i 11 . . 3 (𝑊𝑉 → (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V)
253, 18, 19, 24fvmptd3 6957 . 2 (𝑊𝑉 → (Sphere‘𝑊) = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
262, 25eqtrd 2764 1 (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  cfv 6486  (class class class)co 7353  cmpo 7355  0cc0 11028  +∞cpnf 11165  [,]cicc 13269  Basecbs 17138  distcds 17188  Spherecsph 48717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-sph 48719
This theorem is referenced by:  sphere  48736  rrxsphere  48737
  Copyright terms: Public domain W3C validator