Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spheres Structured version   Visualization version   GIF version

Theorem spheres 47385
Description: The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐡 = (Baseβ€˜π‘Š)
spheres.l 𝑆 = (Sphereβ€˜π‘Š)
spheres.d 𝐷 = (distβ€˜π‘Š)
Assertion
Ref Expression
spheres (π‘Š ∈ 𝑉 β†’ 𝑆 = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
Distinct variable groups:   𝐡,𝑝,π‘Ÿ,π‘₯   π‘Š,𝑝,π‘Ÿ,π‘₯
Allowed substitution hints:   𝐷(π‘₯,π‘Ÿ,𝑝)   𝑆(π‘₯,π‘Ÿ,𝑝)   𝑉(π‘₯,π‘Ÿ,𝑝)

Proof of Theorem spheres
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 spheres.l . . 3 𝑆 = (Sphereβ€˜π‘Š)
21a1i 11 . 2 (π‘Š ∈ 𝑉 β†’ 𝑆 = (Sphereβ€˜π‘Š))
3 df-sph 47369 . . 3 Sphere = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ}))
4 fveq2 6888 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
5 spheres.b . . . . . . 7 𝐡 = (Baseβ€˜π‘Š)
65eqcomi 2741 . . . . . 6 (Baseβ€˜π‘Š) = 𝐡
76a1i 11 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘Š) = 𝐡)
84, 7eqtrd 2772 . . . 4 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝐡)
9 eqidd 2733 . . . 4 (𝑀 = π‘Š β†’ (0[,]+∞) = (0[,]+∞))
10 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ (distβ€˜π‘€) = (distβ€˜π‘Š))
11 spheres.d . . . . . . . . . 10 𝐷 = (distβ€˜π‘Š)
1211eqcomi 2741 . . . . . . . . 9 (distβ€˜π‘Š) = 𝐷
1312a1i 11 . . . . . . . 8 (𝑀 = π‘Š β†’ (distβ€˜π‘Š) = 𝐷)
1410, 13eqtrd 2772 . . . . . . 7 (𝑀 = π‘Š β†’ (distβ€˜π‘€) = 𝐷)
1514oveqd 7422 . . . . . 6 (𝑀 = π‘Š β†’ (𝑝(distβ€˜π‘€)π‘₯) = (𝑝𝐷π‘₯))
1615eqeq1d 2734 . . . . 5 (𝑀 = π‘Š β†’ ((𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ ↔ (𝑝𝐷π‘₯) = π‘Ÿ))
178, 16rabeqbidv 3449 . . . 4 (𝑀 = π‘Š β†’ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ} = {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ})
188, 9, 17mpoeq123dv 7480 . . 3 (𝑀 = π‘Š β†’ (π‘₯ ∈ (Baseβ€˜π‘€), π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ}) = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
19 elex 3492 . . 3 (π‘Š ∈ 𝑉 β†’ π‘Š ∈ V)
20 fvex 6901 . . . . . 6 (Baseβ€˜π‘Š) ∈ V
215, 20eqeltri 2829 . . . . 5 𝐡 ∈ V
22 ovex 7438 . . . . 5 (0[,]+∞) ∈ V
2321, 22mpoex 8062 . . . 4 (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}) ∈ V
2423a1i 11 . . 3 (π‘Š ∈ 𝑉 β†’ (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}) ∈ V)
253, 18, 19, 24fvmptd3 7018 . 2 (π‘Š ∈ 𝑉 β†’ (Sphereβ€˜π‘Š) = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
262, 25eqtrd 2772 1 (π‘Š ∈ 𝑉 β†’ 𝑆 = (π‘₯ ∈ 𝐡, π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐡 ∣ (𝑝𝐷π‘₯) = π‘Ÿ}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  +∞cpnf 11241  [,]cicc 13323  Basecbs 17140  distcds 17202  Spherecsph 47367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-sph 47369
This theorem is referenced by:  sphere  47386  rrxsphere  47387
  Copyright terms: Public domain W3C validator