Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > spheres | Structured version Visualization version GIF version |
Description: The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
spheres.b | ⊢ 𝐵 = (Base‘𝑊) |
spheres.l | ⊢ 𝑆 = (Sphere‘𝑊) |
spheres.d | ⊢ 𝐷 = (dist‘𝑊) |
Ref | Expression |
---|---|
spheres | ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spheres.l | . . 3 ⊢ 𝑆 = (Sphere‘𝑊) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (Sphere‘𝑊)) |
3 | df-sph 46346 | . . 3 ⊢ Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) | |
4 | fveq2 6811 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
5 | spheres.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 5 | eqcomi 2745 | . . . . . 6 ⊢ (Base‘𝑊) = 𝐵 |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑊) = 𝐵) |
8 | 4, 7 | eqtrd 2776 | . . . 4 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
9 | eqidd 2737 | . . . 4 ⊢ (𝑤 = 𝑊 → (0[,]+∞) = (0[,]+∞)) | |
10 | fveq2 6811 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊)) | |
11 | spheres.d | . . . . . . . . . 10 ⊢ 𝐷 = (dist‘𝑊) | |
12 | 11 | eqcomi 2745 | . . . . . . . . 9 ⊢ (dist‘𝑊) = 𝐷 |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (dist‘𝑊) = 𝐷) |
14 | 10, 13 | eqtrd 2776 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷) |
15 | 14 | oveqd 7333 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑝(dist‘𝑤)𝑥) = (𝑝𝐷𝑥)) |
16 | 15 | eqeq1d 2738 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((𝑝(dist‘𝑤)𝑥) = 𝑟 ↔ (𝑝𝐷𝑥) = 𝑟)) |
17 | 8, 16 | rabeqbidv 3419 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) |
18 | 8, 9, 17 | mpoeq123dv 7391 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}) = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
19 | elex 3458 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
20 | fvex 6824 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
21 | 5, 20 | eqeltri 2833 | . . . . 5 ⊢ 𝐵 ∈ V |
22 | ovex 7349 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
23 | 21, 22 | mpoex 7966 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V |
24 | 23 | a1i 11 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V) |
25 | 3, 18, 19, 24 | fvmptd3 6937 | . 2 ⊢ (𝑊 ∈ 𝑉 → (Sphere‘𝑊) = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
26 | 2, 25 | eqtrd 2776 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3403 Vcvv 3440 ‘cfv 6465 (class class class)co 7316 ∈ cmpo 7318 0cc0 10950 +∞cpnf 11085 [,]cicc 13161 Basecbs 16986 distcds 17045 Spherecsph 46344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-1st 7877 df-2nd 7878 df-sph 46346 |
This theorem is referenced by: sphere 46363 rrxsphere 46364 |
Copyright terms: Public domain | W3C validator |