| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spheres | Structured version Visualization version GIF version | ||
| Description: The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
| Ref | Expression |
|---|---|
| spheres.b | ⊢ 𝐵 = (Base‘𝑊) |
| spheres.l | ⊢ 𝑆 = (Sphere‘𝑊) |
| spheres.d | ⊢ 𝐷 = (dist‘𝑊) |
| Ref | Expression |
|---|---|
| spheres | ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spheres.l | . . 3 ⊢ 𝑆 = (Sphere‘𝑊) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (Sphere‘𝑊)) |
| 3 | df-sph 48768 | . . 3 ⊢ Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) | |
| 4 | fveq2 6822 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 5 | spheres.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | 5 | eqcomi 2740 | . . . . . 6 ⊢ (Base‘𝑊) = 𝐵 |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑊) = 𝐵) |
| 8 | 4, 7 | eqtrd 2766 | . . . 4 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
| 9 | eqidd 2732 | . . . 4 ⊢ (𝑤 = 𝑊 → (0[,]+∞) = (0[,]+∞)) | |
| 10 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊)) | |
| 11 | spheres.d | . . . . . . . . . 10 ⊢ 𝐷 = (dist‘𝑊) | |
| 12 | 11 | eqcomi 2740 | . . . . . . . . 9 ⊢ (dist‘𝑊) = 𝐷 |
| 13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (dist‘𝑊) = 𝐷) |
| 14 | 10, 13 | eqtrd 2766 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷) |
| 15 | 14 | oveqd 7363 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑝(dist‘𝑤)𝑥) = (𝑝𝐷𝑥)) |
| 16 | 15 | eqeq1d 2733 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((𝑝(dist‘𝑤)𝑥) = 𝑟 ↔ (𝑝𝐷𝑥) = 𝑟)) |
| 17 | 8, 16 | rabeqbidv 3413 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) |
| 18 | 8, 9, 17 | mpoeq123dv 7421 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}) = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
| 19 | elex 3457 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 20 | fvex 6835 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
| 21 | 5, 20 | eqeltri 2827 | . . . . 5 ⊢ 𝐵 ∈ V |
| 22 | ovex 7379 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
| 23 | 21, 22 | mpoex 8011 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V) |
| 25 | 3, 18, 19, 24 | fvmptd3 6952 | . 2 ⊢ (𝑊 ∈ 𝑉 → (Sphere‘𝑊) = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
| 26 | 2, 25 | eqtrd 2766 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 0cc0 11006 +∞cpnf 11143 [,]cicc 13248 Basecbs 17120 distcds 17170 Spherecsph 48766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-sph 48768 |
| This theorem is referenced by: sphere 48785 rrxsphere 48786 |
| Copyright terms: Public domain | W3C validator |