Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > spheres | Structured version Visualization version GIF version |
Description: The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
spheres.b | ⊢ 𝐵 = (Base‘𝑊) |
spheres.l | ⊢ 𝑆 = (Sphere‘𝑊) |
spheres.d | ⊢ 𝐷 = (dist‘𝑊) |
Ref | Expression |
---|---|
spheres | ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spheres.l | . . 3 ⊢ 𝑆 = (Sphere‘𝑊) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (Sphere‘𝑊)) |
3 | df-sph 45964 | . . 3 ⊢ Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) | |
4 | fveq2 6756 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
5 | spheres.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 5 | eqcomi 2747 | . . . . . 6 ⊢ (Base‘𝑊) = 𝐵 |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑊) = 𝐵) |
8 | 4, 7 | eqtrd 2778 | . . . 4 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
9 | eqidd 2739 | . . . 4 ⊢ (𝑤 = 𝑊 → (0[,]+∞) = (0[,]+∞)) | |
10 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊)) | |
11 | spheres.d | . . . . . . . . . 10 ⊢ 𝐷 = (dist‘𝑊) | |
12 | 11 | eqcomi 2747 | . . . . . . . . 9 ⊢ (dist‘𝑊) = 𝐷 |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (dist‘𝑊) = 𝐷) |
14 | 10, 13 | eqtrd 2778 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷) |
15 | 14 | oveqd 7272 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑝(dist‘𝑤)𝑥) = (𝑝𝐷𝑥)) |
16 | 15 | eqeq1d 2740 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((𝑝(dist‘𝑤)𝑥) = 𝑟 ↔ (𝑝𝐷𝑥) = 𝑟)) |
17 | 8, 16 | rabeqbidv 3410 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) |
18 | 8, 9, 17 | mpoeq123dv 7328 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}) = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
19 | elex 3440 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
20 | fvex 6769 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
21 | 5, 20 | eqeltri 2835 | . . . . 5 ⊢ 𝐵 ∈ V |
22 | ovex 7288 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
23 | 21, 22 | mpoex 7893 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V |
24 | 23 | a1i 11 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V) |
25 | 3, 18, 19, 24 | fvmptd3 6880 | . 2 ⊢ (𝑊 ∈ 𝑉 → (Sphere‘𝑊) = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
26 | 2, 25 | eqtrd 2778 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 0cc0 10802 +∞cpnf 10937 [,]cicc 13011 Basecbs 16840 distcds 16897 Spherecsph 45962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-sph 45964 |
This theorem is referenced by: sphere 45981 rrxsphere 45982 |
Copyright terms: Public domain | W3C validator |