![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > spheres | Structured version Visualization version GIF version |
Description: The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
spheres.b | ⊢ 𝐵 = (Base‘𝑊) |
spheres.l | ⊢ 𝑆 = (Sphere‘𝑊) |
spheres.d | ⊢ 𝐷 = (dist‘𝑊) |
Ref | Expression |
---|---|
spheres | ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spheres.l | . . 3 ⊢ 𝑆 = (Sphere‘𝑊) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (Sphere‘𝑊)) |
3 | df-sph 48464 | . . 3 ⊢ Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) | |
4 | fveq2 6920 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
5 | spheres.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 5 | eqcomi 2749 | . . . . . 6 ⊢ (Base‘𝑊) = 𝐵 |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑊) = 𝐵) |
8 | 4, 7 | eqtrd 2780 | . . . 4 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
9 | eqidd 2741 | . . . 4 ⊢ (𝑤 = 𝑊 → (0[,]+∞) = (0[,]+∞)) | |
10 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊)) | |
11 | spheres.d | . . . . . . . . . 10 ⊢ 𝐷 = (dist‘𝑊) | |
12 | 11 | eqcomi 2749 | . . . . . . . . 9 ⊢ (dist‘𝑊) = 𝐷 |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (dist‘𝑊) = 𝐷) |
14 | 10, 13 | eqtrd 2780 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷) |
15 | 14 | oveqd 7465 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑝(dist‘𝑤)𝑥) = (𝑝𝐷𝑥)) |
16 | 15 | eqeq1d 2742 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((𝑝(dist‘𝑤)𝑥) = 𝑟 ↔ (𝑝𝐷𝑥) = 𝑟)) |
17 | 8, 16 | rabeqbidv 3462 | . . . 4 ⊢ (𝑤 = 𝑊 → {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟} = {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) |
18 | 8, 9, 17 | mpoeq123dv 7525 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}) = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
19 | elex 3509 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
20 | fvex 6933 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
21 | 5, 20 | eqeltri 2840 | . . . . 5 ⊢ 𝐵 ∈ V |
22 | ovex 7481 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
23 | 21, 22 | mpoex 8120 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V |
24 | 23 | a1i 11 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V) |
25 | 3, 18, 19, 24 | fvmptd3 7052 | . 2 ⊢ (𝑊 ∈ 𝑉 → (Sphere‘𝑊) = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
26 | 2, 25 | eqtrd 2780 | 1 ⊢ (𝑊 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ 𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 0cc0 11184 +∞cpnf 11321 [,]cicc 13410 Basecbs 17258 distcds 17320 Spherecsph 48462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-sph 48464 |
This theorem is referenced by: sphere 48481 rrxsphere 48482 |
Copyright terms: Public domain | W3C validator |