Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spheres Structured version   Visualization version   GIF version

Theorem spheres 46092
Description: The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
spheres.b 𝐵 = (Base‘𝑊)
spheres.l 𝑆 = (Sphere‘𝑊)
spheres.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
spheres (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
Distinct variable groups:   𝐵,𝑝,𝑟,𝑥   𝑊,𝑝,𝑟,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑟,𝑝)   𝑆(𝑥,𝑟,𝑝)   𝑉(𝑥,𝑟,𝑝)

Proof of Theorem spheres
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 spheres.l . . 3 𝑆 = (Sphere‘𝑊)
21a1i 11 . 2 (𝑊𝑉𝑆 = (Sphere‘𝑊))
3 df-sph 46076 . . 3 Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}))
4 fveq2 6774 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
5 spheres.b . . . . . . 7 𝐵 = (Base‘𝑊)
65eqcomi 2747 . . . . . 6 (Base‘𝑊) = 𝐵
76a1i 11 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑊) = 𝐵)
84, 7eqtrd 2778 . . . 4 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
9 eqidd 2739 . . . 4 (𝑤 = 𝑊 → (0[,]+∞) = (0[,]+∞))
10 fveq2 6774 . . . . . . . 8 (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊))
11 spheres.d . . . . . . . . . 10 𝐷 = (dist‘𝑊)
1211eqcomi 2747 . . . . . . . . 9 (dist‘𝑊) = 𝐷
1312a1i 11 . . . . . . . 8 (𝑤 = 𝑊 → (dist‘𝑊) = 𝐷)
1410, 13eqtrd 2778 . . . . . . 7 (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷)
1514oveqd 7292 . . . . . 6 (𝑤 = 𝑊 → (𝑝(dist‘𝑤)𝑥) = (𝑝𝐷𝑥))
1615eqeq1d 2740 . . . . 5 (𝑤 = 𝑊 → ((𝑝(dist‘𝑤)𝑥) = 𝑟 ↔ (𝑝𝐷𝑥) = 𝑟))
178, 16rabeqbidv 3420 . . . 4 (𝑤 = 𝑊 → {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟} = {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟})
188, 9, 17mpoeq123dv 7350 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}) = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
19 elex 3450 . . 3 (𝑊𝑉𝑊 ∈ V)
20 fvex 6787 . . . . . 6 (Base‘𝑊) ∈ V
215, 20eqeltri 2835 . . . . 5 𝐵 ∈ V
22 ovex 7308 . . . . 5 (0[,]+∞) ∈ V
2321, 22mpoex 7920 . . . 4 (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V
2423a1i 11 . . 3 (𝑊𝑉 → (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}) ∈ V)
253, 18, 19, 24fvmptd3 6898 . 2 (𝑊𝑉 → (Sphere‘𝑊) = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
262, 25eqtrd 2778 1 (𝑊𝑉𝑆 = (𝑥𝐵, 𝑟 ∈ (0[,]+∞) ↦ {𝑝𝐵 ∣ (𝑝𝐷𝑥) = 𝑟}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  +∞cpnf 11006  [,]cicc 13082  Basecbs 16912  distcds 16971  Spherecsph 46074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-sph 46076
This theorem is referenced by:  sphere  46093  rrxsphere  46094
  Copyright terms: Public domain W3C validator