![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spthsfval | Structured version Visualization version GIF version |
Description: The set of simple paths (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
spthsfval | β’ (SPathsβπΊ) = {β¨π, πβ© β£ (π(TrailsβπΊ)π β§ Fun β‘π)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . 2 β’ (π = πΊ β (Fun β‘π β Fun β‘π)) | |
2 | df-spths 29547 | . 2 β’ SPaths = (π β V β¦ {β¨π, πβ© β£ (π(Trailsβπ)π β§ Fun β‘π)}) | |
3 | 1, 2 | fvmptopab 7469 | 1 β’ (SPathsβπΊ) = {β¨π, πβ© β£ (π(TrailsβπΊ)π β§ Fun β‘π)} |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 394 = wceq 1533 class class class wbr 5141 {copab 5203 β‘ccnv 5669 Fun wfun 6535 βcfv 6541 Trailsctrls 29520 SPathscspths 29543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-iota 6493 df-fun 6543 df-fv 6549 df-spths 29547 |
This theorem is referenced by: isspth 29554 upgrspthswlk 29568 |
Copyright terms: Public domain | W3C validator |