| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pths | Structured version Visualization version GIF version | ||
| Description: Define the set of all
paths (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices." According to Bollobas: "... a path is a walk with distinct vertices.", see Notation of [Bollobas] p. 5. (A walk with distinct vertices is actually a simple path, see upgrwlkdvspth 29759). Therefore, a path can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, which is injective restricted to the set { 1 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| Ref | Expression |
|---|---|
| df-pths | ⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpths 29730 | . 2 class Paths | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | vf | . . . . . . 7 setvar 𝑓 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑓 |
| 6 | vp | . . . . . . 7 setvar 𝑝 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑝 |
| 8 | 2 | cv 1539 | . . . . . . 7 class 𝑔 |
| 9 | ctrls 29708 | . . . . . . 7 class Trails | |
| 10 | 8, 9 | cfv 6561 | . . . . . 6 class (Trails‘𝑔) |
| 11 | 5, 7, 10 | wbr 5143 | . . . . 5 wff 𝑓(Trails‘𝑔)𝑝 |
| 12 | c1 11156 | . . . . . . . . 9 class 1 | |
| 13 | chash 14369 | . . . . . . . . . 10 class ♯ | |
| 14 | 5, 13 | cfv 6561 | . . . . . . . . 9 class (♯‘𝑓) |
| 15 | cfzo 13694 | . . . . . . . . 9 class ..^ | |
| 16 | 12, 14, 15 | co 7431 | . . . . . . . 8 class (1..^(♯‘𝑓)) |
| 17 | 7, 16 | cres 5687 | . . . . . . 7 class (𝑝 ↾ (1..^(♯‘𝑓))) |
| 18 | 17 | ccnv 5684 | . . . . . 6 class ◡(𝑝 ↾ (1..^(♯‘𝑓))) |
| 19 | 18 | wfun 6555 | . . . . 5 wff Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) |
| 20 | cc0 11155 | . . . . . . . . 9 class 0 | |
| 21 | 20, 14 | cpr 4628 | . . . . . . . 8 class {0, (♯‘𝑓)} |
| 22 | 7, 21 | cima 5688 | . . . . . . 7 class (𝑝 “ {0, (♯‘𝑓)}) |
| 23 | 7, 16 | cima 5688 | . . . . . . 7 class (𝑝 “ (1..^(♯‘𝑓))) |
| 24 | 22, 23 | cin 3950 | . . . . . 6 class ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) |
| 25 | c0 4333 | . . . . . 6 class ∅ | |
| 26 | 24, 25 | wceq 1540 | . . . . 5 wff ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅ |
| 27 | 11, 19, 26 | w3a 1087 | . . . 4 wff (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) |
| 28 | 27, 4, 6 | copab 5205 | . . 3 class {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} |
| 29 | 2, 3, 28 | cmpt 5225 | . 2 class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) |
| 30 | 1, 29 | wceq 1540 | 1 wff Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: relpths 29738 pthsfval 29739 |
| Copyright terms: Public domain | W3C validator |