MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pths Structured version   Visualization version   GIF version

Definition df-pths 28970
Description: Define the set of all paths (in an undirected graph).

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices."

According to Bollobas: "... a path is a walk with distinct vertices.", see Notation of [Bollobas] p. 5. (A walk with distinct vertices is actually a simple path, see upgrwlkdvspth 28993).

Therefore, a path can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, which is injective restricted to the set { 1 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.)

Assertion
Ref Expression
df-pths Paths = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun β—‘(𝑝 β†Ύ (1..^(β™―β€˜π‘“))) ∧ ((𝑝 β€œ {0, (β™―β€˜π‘“)}) ∩ (𝑝 β€œ (1..^(β™―β€˜π‘“)))) = βˆ…)})
Distinct variable group:   𝑓,𝑔,𝑝

Detailed syntax breakdown of Definition df-pths
StepHypRef Expression
1 cpths 28966 . 2 class Paths
2 vg . . 3 setvar 𝑔
3 cvv 3474 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1540 . . . . . 6 class 𝑓
6 vp . . . . . . 7 setvar 𝑝
76cv 1540 . . . . . 6 class 𝑝
82cv 1540 . . . . . . 7 class 𝑔
9 ctrls 28944 . . . . . . 7 class Trails
108, 9cfv 6543 . . . . . 6 class (Trailsβ€˜π‘”)
115, 7, 10wbr 5148 . . . . 5 wff 𝑓(Trailsβ€˜π‘”)𝑝
12 c1 11110 . . . . . . . . 9 class 1
13 chash 14289 . . . . . . . . . 10 class β™―
145, 13cfv 6543 . . . . . . . . 9 class (β™―β€˜π‘“)
15 cfzo 13626 . . . . . . . . 9 class ..^
1612, 14, 15co 7408 . . . . . . . 8 class (1..^(β™―β€˜π‘“))
177, 16cres 5678 . . . . . . 7 class (𝑝 β†Ύ (1..^(β™―β€˜π‘“)))
1817ccnv 5675 . . . . . 6 class β—‘(𝑝 β†Ύ (1..^(β™―β€˜π‘“)))
1918wfun 6537 . . . . 5 wff Fun β—‘(𝑝 β†Ύ (1..^(β™―β€˜π‘“)))
20 cc0 11109 . . . . . . . . 9 class 0
2120, 14cpr 4630 . . . . . . . 8 class {0, (β™―β€˜π‘“)}
227, 21cima 5679 . . . . . . 7 class (𝑝 β€œ {0, (β™―β€˜π‘“)})
237, 16cima 5679 . . . . . . 7 class (𝑝 β€œ (1..^(β™―β€˜π‘“)))
2422, 23cin 3947 . . . . . 6 class ((𝑝 β€œ {0, (β™―β€˜π‘“)}) ∩ (𝑝 β€œ (1..^(β™―β€˜π‘“))))
25 c0 4322 . . . . . 6 class βˆ…
2624, 25wceq 1541 . . . . 5 wff ((𝑝 β€œ {0, (β™―β€˜π‘“)}) ∩ (𝑝 β€œ (1..^(β™―β€˜π‘“)))) = βˆ…
2711, 19, 26w3a 1087 . . . 4 wff (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun β—‘(𝑝 β†Ύ (1..^(β™―β€˜π‘“))) ∧ ((𝑝 β€œ {0, (β™―β€˜π‘“)}) ∩ (𝑝 β€œ (1..^(β™―β€˜π‘“)))) = βˆ…)
2827, 4, 6copab 5210 . . 3 class {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun β—‘(𝑝 β†Ύ (1..^(β™―β€˜π‘“))) ∧ ((𝑝 β€œ {0, (β™―β€˜π‘“)}) ∩ (𝑝 β€œ (1..^(β™―β€˜π‘“)))) = βˆ…)}
292, 3, 28cmpt 5231 . 2 class (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun β—‘(𝑝 β†Ύ (1..^(β™―β€˜π‘“))) ∧ ((𝑝 β€œ {0, (β™―β€˜π‘“)}) ∩ (𝑝 β€œ (1..^(β™―β€˜π‘“)))) = βˆ…)})
301, 29wceq 1541 1 wff Paths = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun β—‘(𝑝 β†Ύ (1..^(β™―β€˜π‘“))) ∧ ((𝑝 β€œ {0, (β™―β€˜π‘“)}) ∩ (𝑝 β€œ (1..^(β™―β€˜π‘“)))) = βˆ…)})
Colors of variables: wff setvar class
This definition is referenced by:  relpths  28974  pthsfval  28975
  Copyright terms: Public domain W3C validator