![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relpths | Structured version Visualization version GIF version |
Description: The set (Paths‘𝐺) of all paths on 𝐺 is a set of pairs by our definition of a path, and so is a relation. (Contributed by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
relpths | ⊢ Rel (Paths‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pths 27217 | . 2 ⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) | |
2 | 1 | relmptopab 7211 | 1 ⊢ Rel (Paths‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1068 = wceq 1507 Vcvv 3409 ∩ cin 3822 ∅c0 4172 {cpr 4437 class class class wbr 4925 ◡ccnv 5402 ↾ cres 5405 “ cima 5406 Rel wrel 5408 Fun wfun 6179 ‘cfv 6185 (class class class)co 6974 0cc0 10333 1c1 10334 ..^cfzo 12847 ♯chash 13503 Trailsctrls 27190 Pathscpths 27213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fv 6193 df-pths 27217 |
This theorem is referenced by: iscycl 27292 cyclnspth 27301 |
Copyright terms: Public domain | W3C validator |