Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relpths | Structured version Visualization version GIF version |
Description: The set (Paths‘𝐺) of all paths on 𝐺 is a set of pairs by our definition of a path, and so is a relation. (Contributed by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
relpths | ⊢ Rel (Paths‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pths 27803 | . 2 ⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) | |
2 | 1 | relmptopab 7455 | 1 ⊢ Rel (Paths‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1089 = wceq 1543 Vcvv 3408 ∩ cin 3865 ∅c0 4237 {cpr 4543 class class class wbr 5053 ◡ccnv 5550 ↾ cres 5553 “ cima 5554 Rel wrel 5556 Fun wfun 6374 ‘cfv 6380 (class class class)co 7213 0cc0 10729 1c1 10730 ..^cfzo 13238 ♯chash 13896 Trailsctrls 27778 Pathscpths 27799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fv 6388 df-pths 27803 |
This theorem is referenced by: iscycl 27878 cyclnspth 27887 |
Copyright terms: Public domain | W3C validator |