| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relpths | Structured version Visualization version GIF version | ||
| Description: The set (Paths‘𝐺) of all paths on 𝐺 is a set of pairs by our definition of a path, and so is a relation. (Contributed by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| relpths | ⊢ Rel (Paths‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pths 29644 | . 2 ⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) | |
| 2 | 1 | relmptopab 7639 | 1 ⊢ Rel (Paths‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 Vcvv 3447 ∩ cin 3913 ∅c0 4296 {cpr 4591 class class class wbr 5107 ◡ccnv 5637 ↾ cres 5640 “ cima 5641 Rel wrel 5643 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 ..^cfzo 13615 ♯chash 14295 Trailsctrls 29618 Pathscpths 29640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-pths 29644 |
| This theorem is referenced by: iscycl 29721 cyclnspth 29731 |
| Copyright terms: Public domain | W3C validator |