| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relpths | Structured version Visualization version GIF version | ||
| Description: The set (Paths‘𝐺) of all paths on 𝐺 is a set of pairs by our definition of a path, and so is a relation. (Contributed by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| relpths | ⊢ Rel (Paths‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pths 29694 | . 2 ⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) | |
| 2 | 1 | relmptopab 7619 | 1 ⊢ Rel (Paths‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 Vcvv 3444 ∩ cin 3910 ∅c0 4292 {cpr 4587 class class class wbr 5102 ◡ccnv 5630 ↾ cres 5633 “ cima 5634 Rel wrel 5636 Fun wfun 6493 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 ..^cfzo 13591 ♯chash 14271 Trailsctrls 29669 Pathscpths 29690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-pths 29694 |
| This theorem is referenced by: iscycl 29771 cyclnspth 29781 |
| Copyright terms: Public domain | W3C validator |