MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthson Structured version   Visualization version   GIF version

Theorem spthson 29740
Description: The set of simple paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
pthsonfval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
spthson ((𝐴𝑉𝐵𝑉) → (𝐴(SPathsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(SPaths‘𝐺)𝑝)})
Distinct variable groups:   𝑓,𝐺,𝑝   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝑓,𝑉,𝑝

Proof of Theorem spthson
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsonfval.v . . . 4 𝑉 = (Vtx‘𝐺)
211vgrex 29001 . . 3 (𝐴𝑉𝐺 ∈ V)
32adantr 480 . 2 ((𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
4 simpl 482 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
54, 1eleqtrdi 2843 . 2 ((𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
6 simpr 484 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
76, 1eleqtrdi 2843 . 2 ((𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
8 df-spthson 29716 . 2 SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(SPaths‘𝑔)𝑝)}))
93, 5, 7, 8mptmpoopabovd 8023 1 ((𝐴𝑉𝐵𝑉) → (𝐴(SPathsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(SPaths‘𝐺)𝑝)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5095  {copab 5157  cfv 6489  (class class class)co 7355  Vtxcvtx 28995  TrailsOnctrlson 29689  SPathscspths 29710  SPathsOncspthson 29712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-spthson 29716
This theorem is referenced by:  isspthson  29742
  Copyright terms: Public domain W3C validator