![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spthson | Structured version Visualization version GIF version |
Description: The set of simple paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
pthsonfval.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
spthson | β’ ((π΄ β π β§ π΅ β π) β (π΄(SPathsOnβπΊ)π΅) = {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(SPathsβπΊ)π)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthsonfval.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | 1 | 1vgrex 28251 | . . 3 β’ (π΄ β π β πΊ β V) |
3 | 2 | adantr 481 | . 2 β’ ((π΄ β π β§ π΅ β π) β πΊ β V) |
4 | simpl 483 | . . 3 β’ ((π΄ β π β§ π΅ β π) β π΄ β π) | |
5 | 4, 1 | eleqtrdi 2843 | . 2 β’ ((π΄ β π β§ π΅ β π) β π΄ β (VtxβπΊ)) |
6 | simpr 485 | . . 3 β’ ((π΄ β π β§ π΅ β π) β π΅ β π) | |
7 | 6, 1 | eleqtrdi 2843 | . 2 β’ ((π΄ β π β§ π΅ β π) β π΅ β (VtxβπΊ)) |
8 | df-spthson 28965 | . 2 β’ SPathsOn = (π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(π(TrailsOnβπ)π)π β§ π(SPathsβπ)π)})) | |
9 | 3, 5, 7, 8 | mptmpoopabovd 8064 | 1 β’ ((π΄ β π β§ π΅ β π) β (π΄(SPathsOnβπΊ)π΅) = {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(SPathsβπΊ)π)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 class class class wbr 5147 {copab 5209 βcfv 6540 (class class class)co 7405 Vtxcvtx 28245 TrailsOnctrlson 28937 SPathscspths 28959 SPathsOncspthson 28961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-spthson 28965 |
This theorem is referenced by: isspthson 28989 |
Copyright terms: Public domain | W3C validator |