MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthson Structured version   Visualization version   GIF version

Theorem spthson 28987
Description: The set of simple paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
pthsonfval.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
spthson ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(SPathsOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(SPathsβ€˜πΊ)𝑝)})
Distinct variable groups:   𝑓,𝐺,𝑝   𝐴,𝑓,𝑝   𝐡,𝑓,𝑝   𝑓,𝑉,𝑝

Proof of Theorem spthson
Dummy variables π‘Ž 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsonfval.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
211vgrex 28251 . . 3 (𝐴 ∈ 𝑉 β†’ 𝐺 ∈ V)
32adantr 481 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐺 ∈ V)
4 simpl 483 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐴 ∈ 𝑉)
54, 1eleqtrdi 2843 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐴 ∈ (Vtxβ€˜πΊ))
6 simpr 485 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐡 ∈ 𝑉)
76, 1eleqtrdi 2843 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ 𝐡 ∈ (Vtxβ€˜πΊ))
8 df-spthson 28965 . 2 SPathsOn = (𝑔 ∈ V ↦ (π‘Ž ∈ (Vtxβ€˜π‘”), 𝑏 ∈ (Vtxβ€˜π‘”) ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(π‘Ž(TrailsOnβ€˜π‘”)𝑏)𝑝 ∧ 𝑓(SPathsβ€˜π‘”)𝑝)}))
93, 5, 7, 8mptmpoopabovd 8064 1 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(SPathsOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(SPathsβ€˜πΊ)𝑝)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   class class class wbr 5147  {copab 5209  β€˜cfv 6540  (class class class)co 7405  Vtxcvtx 28245  TrailsOnctrlson 28937  SPathscspths 28959  SPathsOncspthson 28961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-spthson 28965
This theorem is referenced by:  isspthson  28989
  Copyright terms: Public domain W3C validator