Detailed syntax breakdown of Definition df-st
| Step | Hyp | Ref
| Expression |
| 1 | | cst 30981 |
. 2
class
States |
| 2 | | chba 30938 |
. . . . . 6
class
ℋ |
| 3 | | vf |
. . . . . . 7
setvar 𝑓 |
| 4 | 3 | cv 1539 |
. . . . . 6
class 𝑓 |
| 5 | 2, 4 | cfv 6561 |
. . . . 5
class (𝑓‘
ℋ) |
| 6 | | c1 11156 |
. . . . 5
class
1 |
| 7 | 5, 6 | wceq 1540 |
. . . 4
wff (𝑓‘ ℋ) =
1 |
| 8 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 9 | 8 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 10 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 11 | 10 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 12 | | cort 30949 |
. . . . . . . . 9
class
⊥ |
| 13 | 11, 12 | cfv 6561 |
. . . . . . . 8
class
(⊥‘𝑦) |
| 14 | 9, 13 | wss 3951 |
. . . . . . 7
wff 𝑥 ⊆ (⊥‘𝑦) |
| 15 | | chj 30952 |
. . . . . . . . . 10
class
∨ℋ |
| 16 | 9, 11, 15 | co 7431 |
. . . . . . . . 9
class (𝑥 ∨ℋ 𝑦) |
| 17 | 16, 4 | cfv 6561 |
. . . . . . . 8
class (𝑓‘(𝑥 ∨ℋ 𝑦)) |
| 18 | 9, 4 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑥) |
| 19 | 11, 4 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑦) |
| 20 | | caddc 11158 |
. . . . . . . . 9
class
+ |
| 21 | 18, 19, 20 | co 7431 |
. . . . . . . 8
class ((𝑓‘𝑥) + (𝑓‘𝑦)) |
| 22 | 17, 21 | wceq 1540 |
. . . . . . 7
wff (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦)) |
| 23 | 14, 22 | wi 4 |
. . . . . 6
wff (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦))) |
| 24 | | cch 30948 |
. . . . . 6
class
Cℋ |
| 25 | 23, 10, 24 | wral 3061 |
. . . . 5
wff
∀𝑦 ∈
Cℋ (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦))) |
| 26 | 25, 8, 24 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦))) |
| 27 | 7, 26 | wa 395 |
. . 3
wff ((𝑓‘ ℋ) = 1 ∧
∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦)))) |
| 28 | | cc0 11155 |
. . . . 5
class
0 |
| 29 | | cicc 13390 |
. . . . 5
class
[,] |
| 30 | 28, 6, 29 | co 7431 |
. . . 4
class
(0[,]1) |
| 31 | | cmap 8866 |
. . . 4
class
↑m |
| 32 | 30, 24, 31 | co 7431 |
. . 3
class ((0[,]1)
↑m Cℋ ) |
| 33 | 27, 3, 32 | crab 3436 |
. 2
class {𝑓 ∈ ((0[,]1)
↑m Cℋ ) ∣ ((𝑓‘ ℋ) = 1 ∧
∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦))))} |
| 34 | 1, 33 | wceq 1540 |
1
wff States =
{𝑓 ∈ ((0[,]1)
↑m Cℋ ) ∣ ((𝑓‘ ℋ) = 1 ∧
∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦))))} |