HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isst Structured version   Visualization version   GIF version

Theorem isst 32140
Description: Property of a state. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isst (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem isst
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ovex 7436 . . . 4 (0[,]1) ∈ V
2 chex 31153 . . . 4 C ∈ V
31, 2elmap 8883 . . 3 (𝑆 ∈ ((0[,]1) ↑m C ) ↔ 𝑆: C ⟶(0[,]1))
43anbi1i 624 . 2 ((𝑆 ∈ ((0[,]1) ↑m C ) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))) ↔ (𝑆: C ⟶(0[,]1) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
5 fveq1 6874 . . . . 5 (𝑓 = 𝑆 → (𝑓‘ ℋ) = (𝑆‘ ℋ))
65eqeq1d 2737 . . . 4 (𝑓 = 𝑆 → ((𝑓‘ ℋ) = 1 ↔ (𝑆‘ ℋ) = 1))
7 fveq1 6874 . . . . . . 7 (𝑓 = 𝑆 → (𝑓‘(𝑥 𝑦)) = (𝑆‘(𝑥 𝑦)))
8 fveq1 6874 . . . . . . . 8 (𝑓 = 𝑆 → (𝑓𝑥) = (𝑆𝑥))
9 fveq1 6874 . . . . . . . 8 (𝑓 = 𝑆 → (𝑓𝑦) = (𝑆𝑦))
108, 9oveq12d 7421 . . . . . . 7 (𝑓 = 𝑆 → ((𝑓𝑥) + (𝑓𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))
117, 10eqeq12d 2751 . . . . . 6 (𝑓 = 𝑆 → ((𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))
1211imbi2d 340 . . . . 5 (𝑓 = 𝑆 → ((𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))) ↔ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
13122ralbidv 3205 . . . 4 (𝑓 = 𝑆 → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
146, 13anbi12d 632 . . 3 (𝑓 = 𝑆 → (((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))) ↔ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
15 df-st 32138 . . 3 States = {𝑓 ∈ ((0[,]1) ↑m C ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))))}
1614, 15elrab2 3674 . 2 (𝑆 ∈ States ↔ (𝑆 ∈ ((0[,]1) ↑m C ) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
17 3anass 1094 . 2 ((𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) ↔ (𝑆: C ⟶(0[,]1) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
184, 16, 173bitr4i 303 1 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wss 3926  wf 6526  cfv 6530  (class class class)co 7403  m cmap 8838  0cc0 11127  1c1 11128   + caddc 11130  [,]cicc 13363  chba 30846   C cch 30856  cort 30857   chj 30860  Statescst 30889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-hilex 30926
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-sh 31134  df-ch 31148  df-st 32138
This theorem is referenced by:  sticl  32142  sthil  32161  stj  32162  strlem3a  32179
  Copyright terms: Public domain W3C validator