HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isst Structured version   Visualization version   GIF version

Theorem isst 29984
Description: Property of a state. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isst (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem isst
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ovex 7183 . . . 4 (0[,]1) ∈ V
2 chex 28997 . . . 4 C ∈ V
31, 2elmap 8429 . . 3 (𝑆 ∈ ((0[,]1) ↑m C ) ↔ 𝑆: C ⟶(0[,]1))
43anbi1i 625 . 2 ((𝑆 ∈ ((0[,]1) ↑m C ) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))) ↔ (𝑆: C ⟶(0[,]1) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
5 fveq1 6663 . . . . 5 (𝑓 = 𝑆 → (𝑓‘ ℋ) = (𝑆‘ ℋ))
65eqeq1d 2823 . . . 4 (𝑓 = 𝑆 → ((𝑓‘ ℋ) = 1 ↔ (𝑆‘ ℋ) = 1))
7 fveq1 6663 . . . . . . 7 (𝑓 = 𝑆 → (𝑓‘(𝑥 𝑦)) = (𝑆‘(𝑥 𝑦)))
8 fveq1 6663 . . . . . . . 8 (𝑓 = 𝑆 → (𝑓𝑥) = (𝑆𝑥))
9 fveq1 6663 . . . . . . . 8 (𝑓 = 𝑆 → (𝑓𝑦) = (𝑆𝑦))
108, 9oveq12d 7168 . . . . . . 7 (𝑓 = 𝑆 → ((𝑓𝑥) + (𝑓𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))
117, 10eqeq12d 2837 . . . . . 6 (𝑓 = 𝑆 → ((𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))
1211imbi2d 343 . . . . 5 (𝑓 = 𝑆 → ((𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))) ↔ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
13122ralbidv 3199 . . . 4 (𝑓 = 𝑆 → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
146, 13anbi12d 632 . . 3 (𝑓 = 𝑆 → (((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))) ↔ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
15 df-st 29982 . . 3 States = {𝑓 ∈ ((0[,]1) ↑m C ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))))}
1614, 15elrab2 3682 . 2 (𝑆 ∈ States ↔ (𝑆 ∈ ((0[,]1) ↑m C ) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
17 3anass 1091 . 2 ((𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) ↔ (𝑆: C ⟶(0[,]1) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
184, 16, 173bitr4i 305 1 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3935  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400  0cc0 10531  1c1 10532   + caddc 10534  [,]cicc 12735  chba 28690   C cch 28700  cort 28701   chj 28704  Statescst 28733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-hilex 28770
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-sh 28978  df-ch 28992  df-st 29982
This theorem is referenced by:  sticl  29986  sthil  30005  stj  30006  strlem3a  30023
  Copyright terms: Public domain W3C validator