Detailed syntax breakdown of Definition df-hst
| Step | Hyp | Ref
| Expression |
| 1 | | chst 30982 |
. 2
class
CHStates |
| 2 | | chba 30938 |
. . . . . . 7
class
ℋ |
| 3 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 4 | 3 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 5 | 2, 4 | cfv 6561 |
. . . . . 6
class (𝑓‘
ℋ) |
| 6 | | cno 30942 |
. . . . . 6
class
normℎ |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(normℎ‘(𝑓‘ ℋ)) |
| 8 | | c1 11156 |
. . . . 5
class
1 |
| 9 | 7, 8 | wceq 1540 |
. . . 4
wff
(normℎ‘(𝑓‘ ℋ)) = 1 |
| 10 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 11 | 10 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 12 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 13 | 12 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 14 | | cort 30949 |
. . . . . . . . 9
class
⊥ |
| 15 | 13, 14 | cfv 6561 |
. . . . . . . 8
class
(⊥‘𝑦) |
| 16 | 11, 15 | wss 3951 |
. . . . . . 7
wff 𝑥 ⊆ (⊥‘𝑦) |
| 17 | 11, 4 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑥) |
| 18 | 13, 4 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑦) |
| 19 | | csp 30941 |
. . . . . . . . . 10
class
·ih |
| 20 | 17, 18, 19 | co 7431 |
. . . . . . . . 9
class ((𝑓‘𝑥) ·ih (𝑓‘𝑦)) |
| 21 | | cc0 11155 |
. . . . . . . . 9
class
0 |
| 22 | 20, 21 | wceq 1540 |
. . . . . . . 8
wff ((𝑓‘𝑥) ·ih (𝑓‘𝑦)) = 0 |
| 23 | | chj 30952 |
. . . . . . . . . . 11
class
∨ℋ |
| 24 | 11, 13, 23 | co 7431 |
. . . . . . . . . 10
class (𝑥 ∨ℋ 𝑦) |
| 25 | 24, 4 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘(𝑥 ∨ℋ 𝑦)) |
| 26 | | cva 30939 |
. . . . . . . . . 10
class
+ℎ |
| 27 | 17, 18, 26 | co 7431 |
. . . . . . . . 9
class ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)) |
| 28 | 25, 27 | wceq 1540 |
. . . . . . . 8
wff (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)) |
| 29 | 22, 28 | wa 395 |
. . . . . . 7
wff (((𝑓‘𝑥) ·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦))) |
| 30 | 16, 29 | wi 4 |
. . . . . 6
wff (𝑥 ⊆ (⊥‘𝑦) → (((𝑓‘𝑥) ·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)))) |
| 31 | | cch 30948 |
. . . . . 6
class
Cℋ |
| 32 | 30, 12, 31 | wral 3061 |
. . . . 5
wff
∀𝑦 ∈
Cℋ (𝑥 ⊆ (⊥‘𝑦) → (((𝑓‘𝑥) ·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)))) |
| 33 | 32, 10, 31 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(((𝑓‘𝑥)
·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)))) |
| 34 | 9, 33 | wa 395 |
. . 3
wff
((normℎ‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(((𝑓‘𝑥)
·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦))))) |
| 35 | | cmap 8866 |
. . . 4
class
↑m |
| 36 | 2, 31, 35 | co 7431 |
. . 3
class ( ℋ
↑m Cℋ ) |
| 37 | 34, 3, 36 | crab 3436 |
. 2
class {𝑓 ∈ ( ℋ
↑m Cℋ ) ∣
((normℎ‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(((𝑓‘𝑥)
·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)))))} |
| 38 | 1, 37 | wceq 1540 |
1
wff CHStates =
{𝑓 ∈ ( ℋ
↑m Cℋ ) ∣
((normℎ‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(((𝑓‘𝑥)
·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)))))} |