MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sub Structured version   Visualization version   GIF version

Definition df-sub 11207
Description: Define subtraction. Theorem subval 11212 shows its value (and describes how this definition works), Theorem subaddi 11308 relates it to addition, and Theorems subcli 11297 and resubcli 11283 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 11205 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 10869 . . 3 class
53cv 1538 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1538 . . . . . 6 class 𝑧
8 caddc 10874 . . . . . 6 class +
95, 7, 8co 7275 . . . . 5 class (𝑦 + 𝑧)
102cv 1538 . . . . 5 class 𝑥
119, 10wceq 1539 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 7231 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 7277 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1539 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  subval  11212  subf  11223  sn-subf  40410
  Copyright terms: Public domain W3C validator