MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sub Structured version   Visualization version   GIF version

Definition df-sub 11112
Description: Define subtraction. Theorem subval 11117 shows its value (and describes how this definition works), Theorem subaddi 11213 relates it to addition, and Theorems subcli 11202 and resubcli 11188 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 11110 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 10775 . . 3 class
53cv 1542 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1542 . . . . . 6 class 𝑧
8 caddc 10780 . . . . . 6 class +
95, 7, 8co 7252 . . . . 5 class (𝑦 + 𝑧)
102cv 1542 . . . . 5 class 𝑥
119, 10wceq 1543 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 7208 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 7254 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1543 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  subval  11117  subf  11128  sn-subf  40303
  Copyright terms: Public domain W3C validator