![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sub | Structured version Visualization version GIF version |
Description: Define subtraction. Theorem subval 11451 shows its value (and describes how this definition works), Theorem subaddi 11547 relates it to addition, and Theorems subcli 11536 and resubcli 11522 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
Ref | Expression |
---|---|
df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmin 11444 | . 2 class − | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 11108 | . . 3 class ℂ | |
5 | 3 | cv 1541 | . . . . . 6 class 𝑦 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1541 | . . . . . 6 class 𝑧 |
8 | caddc 11113 | . . . . . 6 class + | |
9 | 5, 7, 8 | co 7409 | . . . . 5 class (𝑦 + 𝑧) |
10 | 2 | cv 1541 | . . . . 5 class 𝑥 |
11 | 9, 10 | wceq 1542 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
12 | 11, 6, 4 | crio 7364 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
13 | 2, 3, 4, 4, 12 | cmpo 7411 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
14 | 1, 13 | wceq 1542 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Colors of variables: wff setvar class |
This definition is referenced by: subval 11451 subf 11462 sn-subf 41349 |
Copyright terms: Public domain | W3C validator |