| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sub | Structured version Visualization version GIF version | ||
| Description: Define subtraction. Theorem subval 11372 shows its value (and describes how this definition works), Theorem subaddi 11469 relates it to addition, and Theorems subcli 11458 and resubcli 11444 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmin 11365 | . 2 class − | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 11026 | . . 3 class ℂ | |
| 5 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | caddc 11031 | . . . . . 6 class + | |
| 9 | 5, 7, 8 | co 7353 | . . . . 5 class (𝑦 + 𝑧) |
| 10 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 11 | 9, 10 | wceq 1540 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
| 12 | 11, 6, 4 | crio 7309 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
| 13 | 2, 3, 4, 4, 12 | cmpo 7355 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| 14 | 1, 13 | wceq 1540 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: subval 11372 subf 11383 sn-subf 42405 |
| Copyright terms: Public domain | W3C validator |