MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sub Structured version   Visualization version   GIF version

Definition df-sub 11491
Description: Define subtraction. Theorem subval 11496 shows its value (and describes how this definition works), Theorem subaddi 11593 relates it to addition, and Theorems subcli 11582 and resubcli 11568 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 11489 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 11150 . . 3 class
53cv 1535 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1535 . . . . . 6 class 𝑧
8 caddc 11155 . . . . . 6 class +
95, 7, 8co 7430 . . . . 5 class (𝑦 + 𝑧)
102cv 1535 . . . . 5 class 𝑥
119, 10wceq 1536 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 7386 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 7432 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1536 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  subval  11496  subf  11507  sn-subf  42434
  Copyright terms: Public domain W3C validator