| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sub | Structured version Visualization version GIF version | ||
| Description: Define subtraction. Theorem subval 11419 shows its value (and describes how this definition works), Theorem subaddi 11516 relates it to addition, and Theorems subcli 11505 and resubcli 11491 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmin 11412 | . 2 class − | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 11073 | . . 3 class ℂ | |
| 5 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | caddc 11078 | . . . . . 6 class + | |
| 9 | 5, 7, 8 | co 7390 | . . . . 5 class (𝑦 + 𝑧) |
| 10 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 11 | 9, 10 | wceq 1540 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
| 12 | 11, 6, 4 | crio 7346 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
| 13 | 2, 3, 4, 4, 12 | cmpo 7392 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| 14 | 1, 13 | wceq 1540 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: subval 11419 subf 11430 sn-subf 42424 |
| Copyright terms: Public domain | W3C validator |