MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sub Structured version   Visualization version   GIF version

Definition df-sub 11446
Description: Define subtraction. Theorem subval 11451 shows its value (and describes how this definition works), Theorem subaddi 11547 relates it to addition, and Theorems subcli 11536 and resubcli 11522 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 11444 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 11108 . . 3 class
53cv 1541 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1541 . . . . . 6 class 𝑧
8 caddc 11113 . . . . . 6 class +
95, 7, 8co 7409 . . . . 5 class (𝑦 + 𝑧)
102cv 1541 . . . . 5 class 𝑥
119, 10wceq 1542 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 7364 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 7411 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1542 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  subval  11451  subf  11462  sn-subf  41349
  Copyright terms: Public domain W3C validator