| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sub | Structured version Visualization version GIF version | ||
| Description: Define subtraction. Theorem subval 11351 shows its value (and describes how this definition works), Theorem subaddi 11448 relates it to addition, and Theorems subcli 11437 and resubcli 11423 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmin 11344 | . 2 class − | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 11004 | . . 3 class ℂ | |
| 5 | 3 | cv 1540 | . . . . . 6 class 𝑦 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
| 8 | caddc 11009 | . . . . . 6 class + | |
| 9 | 5, 7, 8 | co 7346 | . . . . 5 class (𝑦 + 𝑧) |
| 10 | 2 | cv 1540 | . . . . 5 class 𝑥 |
| 11 | 9, 10 | wceq 1541 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
| 12 | 11, 6, 4 | crio 7302 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
| 13 | 2, 3, 4, 4, 12 | cmpo 7348 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| 14 | 1, 13 | wceq 1541 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: subval 11351 subf 11362 sn-subf 42470 |
| Copyright terms: Public domain | W3C validator |