MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sub Structured version   Visualization version   GIF version

Definition df-sub 11346
Description: Define subtraction. Theorem subval 11351 shows its value (and describes how this definition works), Theorem subaddi 11448 relates it to addition, and Theorems subcli 11437 and resubcli 11423 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 11344 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 11004 . . 3 class
53cv 1540 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1540 . . . . . 6 class 𝑧
8 caddc 11009 . . . . . 6 class +
95, 7, 8co 7346 . . . . 5 class (𝑦 + 𝑧)
102cv 1540 . . . . 5 class 𝑥
119, 10wceq 1541 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 7302 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 7348 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1541 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  subval  11351  subf  11362  sn-subf  42470
  Copyright terms: Public domain W3C validator