![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sub | Structured version Visualization version GIF version |
Description: Define subtraction. Theorem subval 11496 shows its value (and describes how this definition works), Theorem subaddi 11593 relates it to addition, and Theorems subcli 11582 and resubcli 11568 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
Ref | Expression |
---|---|
df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmin 11489 | . 2 class − | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 11150 | . . 3 class ℂ | |
5 | 3 | cv 1535 | . . . . . 6 class 𝑦 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1535 | . . . . . 6 class 𝑧 |
8 | caddc 11155 | . . . . . 6 class + | |
9 | 5, 7, 8 | co 7430 | . . . . 5 class (𝑦 + 𝑧) |
10 | 2 | cv 1535 | . . . . 5 class 𝑥 |
11 | 9, 10 | wceq 1536 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
12 | 11, 6, 4 | crio 7386 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
13 | 2, 3, 4, 4, 12 | cmpo 7432 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
14 | 1, 13 | wceq 1536 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Colors of variables: wff setvar class |
This definition is referenced by: subval 11496 subf 11507 sn-subf 42434 |
Copyright terms: Public domain | W3C validator |