| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sub | Structured version Visualization version GIF version | ||
| Description: Define subtraction. Theorem subval 11471 shows its value (and describes how this definition works), Theorem subaddi 11568 relates it to addition, and Theorems subcli 11557 and resubcli 11543 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmin 11464 | . 2 class − | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 11125 | . . 3 class ℂ | |
| 5 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | caddc 11130 | . . . . . 6 class + | |
| 9 | 5, 7, 8 | co 7403 | . . . . 5 class (𝑦 + 𝑧) |
| 10 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 11 | 9, 10 | wceq 1540 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
| 12 | 11, 6, 4 | crio 7359 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
| 13 | 2, 3, 4, 4, 12 | cmpo 7405 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| 14 | 1, 13 | wceq 1540 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: subval 11471 subf 11482 sn-subf 42418 |
| Copyright terms: Public domain | W3C validator |