MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sub Structured version   Visualization version   GIF version

Definition df-sub 11466
Description: Define subtraction. Theorem subval 11471 shows its value (and describes how this definition works), Theorem subaddi 11568 relates it to addition, and Theorems subcli 11557 and resubcli 11543 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 11464 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 11125 . . 3 class
53cv 1539 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 caddc 11130 . . . . . 6 class +
95, 7, 8co 7403 . . . . 5 class (𝑦 + 𝑧)
102cv 1539 . . . . 5 class 𝑥
119, 10wceq 1540 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 7359 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 7405 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1540 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  subval  11471  subf  11482  sn-subf  42418
  Copyright terms: Public domain W3C validator