MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sub Structured version   Visualization version   GIF version

Definition df-sub 11522
Description: Define subtraction. Theorem subval 11527 shows its value (and describes how this definition works), Theorem subaddi 11623 relates it to addition, and Theorems subcli 11612 and resubcli 11598 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 11520 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 11182 . . 3 class
53cv 1536 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1536 . . . . . 6 class 𝑧
8 caddc 11187 . . . . . 6 class +
95, 7, 8co 7448 . . . . 5 class (𝑦 + 𝑧)
102cv 1536 . . . . 5 class 𝑥
119, 10wceq 1537 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 7403 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 7450 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1537 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  subval  11527  subf  11538  sn-subf  42404
  Copyright terms: Public domain W3C validator