MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sub Structured version   Visualization version   GIF version

Definition df-sub 11414
Description: Define subtraction. Theorem subval 11419 shows its value (and describes how this definition works), Theorem subaddi 11516 relates it to addition, and Theorems subcli 11505 and resubcli 11491 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 11412 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 11073 . . 3 class
53cv 1539 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 caddc 11078 . . . . . 6 class +
95, 7, 8co 7390 . . . . 5 class (𝑦 + 𝑧)
102cv 1539 . . . . 5 class 𝑥
119, 10wceq 1540 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 7346 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 7392 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1540 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  subval  11419  subf  11430  sn-subf  42424
  Copyright terms: Public domain W3C validator