Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-sub | Structured version Visualization version GIF version |
Description: Define subtraction. Theorem subval 11212 shows its value (and describes how this definition works), Theorem subaddi 11308 relates it to addition, and Theorems subcli 11297 and resubcli 11283 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
Ref | Expression |
---|---|
df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmin 11205 | . 2 class − | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 10869 | . . 3 class ℂ | |
5 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
8 | caddc 10874 | . . . . . 6 class + | |
9 | 5, 7, 8 | co 7275 | . . . . 5 class (𝑦 + 𝑧) |
10 | 2 | cv 1538 | . . . . 5 class 𝑥 |
11 | 9, 10 | wceq 1539 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
12 | 11, 6, 4 | crio 7231 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
13 | 2, 3, 4, 4, 12 | cmpo 7277 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
14 | 1, 13 | wceq 1539 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Colors of variables: wff setvar class |
This definition is referenced by: subval 11212 subf 11223 sn-subf 40410 |
Copyright terms: Public domain | W3C validator |