Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-sub | Structured version Visualization version GIF version |
Description: Define subtraction. Theorem subval 11117 shows its value (and describes how this definition works), Theorem subaddi 11213 relates it to addition, and Theorems subcli 11202 and resubcli 11188 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
Ref | Expression |
---|---|
df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmin 11110 | . 2 class − | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 10775 | . . 3 class ℂ | |
5 | 3 | cv 1542 | . . . . . 6 class 𝑦 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1542 | . . . . . 6 class 𝑧 |
8 | caddc 10780 | . . . . . 6 class + | |
9 | 5, 7, 8 | co 7252 | . . . . 5 class (𝑦 + 𝑧) |
10 | 2 | cv 1542 | . . . . 5 class 𝑥 |
11 | 9, 10 | wceq 1543 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
12 | 11, 6, 4 | crio 7208 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
13 | 2, 3, 4, 4, 12 | cmpo 7254 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
14 | 1, 13 | wceq 1543 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Colors of variables: wff setvar class |
This definition is referenced by: subval 11117 subf 11128 sn-subf 40303 |
Copyright terms: Public domain | W3C validator |