MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sub Structured version   Visualization version   GIF version

Definition df-sub 11407
Description: Define subtraction. Theorem subval 11412 shows its value (and describes how this definition works), Theorem subaddi 11509 relates it to addition, and Theorems subcli 11498 and resubcli 11484 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
Assertion
Ref Expression
df-sub − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-sub
StepHypRef Expression
1 cmin 11405 . 2 class
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 11066 . . 3 class
53cv 1539 . . . . . 6 class 𝑦
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 caddc 11071 . . . . . 6 class +
95, 7, 8co 7387 . . . . 5 class (𝑦 + 𝑧)
102cv 1539 . . . . 5 class 𝑥
119, 10wceq 1540 . . . 4 wff (𝑦 + 𝑧) = 𝑥
1211, 6, 4crio 7343 . . 3 class (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)
132, 3, 4, 4, 12cmpo 7389 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
141, 13wceq 1540 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  subval  11412  subf  11423  sn-subf  42417
  Copyright terms: Public domain W3C validator