Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-sub | Structured version Visualization version GIF version |
Description: Define subtraction. Theorem subval 11313 shows its value (and describes how this definition works), Theorem subaddi 11409 relates it to addition, and Theorems subcli 11398 and resubcli 11384 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
Ref | Expression |
---|---|
df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmin 11306 | . 2 class − | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 10970 | . . 3 class ℂ | |
5 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
8 | caddc 10975 | . . . . . 6 class + | |
9 | 5, 7, 8 | co 7337 | . . . . 5 class (𝑦 + 𝑧) |
10 | 2 | cv 1539 | . . . . 5 class 𝑥 |
11 | 9, 10 | wceq 1540 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
12 | 11, 6, 4 | crio 7292 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
13 | 2, 3, 4, 4, 12 | cmpo 7339 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
14 | 1, 13 | wceq 1540 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Colors of variables: wff setvar class |
This definition is referenced by: subval 11313 subf 11324 sn-subf 40670 |
Copyright terms: Public domain | W3C validator |