| Metamath
Proof Explorer Theorem List (p. 115 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | subsub 11401 | Law for double subtraction. (Contributed by NM, 13-May-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | ||
| Theorem | nppcan2 11402 | Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) | ||
| Theorem | subsub3 11403 | Law for double subtraction. (Contributed by NM, 27-Jul-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) | ||
| Theorem | subsub4 11404 | Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) | ||
| Theorem | sub32 11405 | Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) | ||
| Theorem | nnncan 11406 | Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) | ||
| Theorem | nnncan1 11407 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) | ||
| Theorem | nnncan2 11408 | Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) | ||
| Theorem | npncan3 11409 | Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) | ||
| Theorem | pnpcan 11410 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by SN, 13-Nov-2023.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) | ||
| Theorem | pnpcan2 11411 | Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) | ||
| Theorem | pnncan 11412 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) | ||
| Theorem | ppncan 11413 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) | ||
| Theorem | addsub4 11414 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷))) | ||
| Theorem | subadd4 11415 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶))) | ||
| Theorem | sub4 11416 | Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 − 𝐶) − (𝐵 − 𝐷))) | ||
| Theorem | neg0 11417 | Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| ⊢ -0 = 0 | ||
| Theorem | negid 11418 | Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | ||
| Theorem | negsub 11419 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subneg 11420 | Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | negneg 11421 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | ||
| Theorem | neg11 11422 | Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | negcon1 11423 | Negative contraposition law. (Contributed by NM, 9-May-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) | ||
| Theorem | negcon2 11424 | Negative contraposition law. (Contributed by NM, 14-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = -𝐵 ↔ 𝐵 = -𝐴)) | ||
| Theorem | negeq0 11425 | A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) | ||
| Theorem | subcan 11426 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | negsubdi 11427 | Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | ||
| Theorem | negdi 11428 | Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) | ||
| Theorem | negdi2 11429 | Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) | ||
| Theorem | negsubdi2 11430 | Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | neg2sub 11431 | Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | renegcli 11432 | Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 11434 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ -𝐴 ∈ ℝ | ||
| Theorem | resubcli 11433 | Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℝ | ||
| Theorem | renegcl 11434 | Closure law for negative of reals. The weak deduction theorem dedth 4535 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11432, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | ||
| Theorem | resubcl 11435 | Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | ||
| Theorem | negreb 11436 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) | ||
| Theorem | peano2cnm 11437 | "Reverse" second Peano postulate analogue for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | ||
| Theorem | peano2rem 11438 | "Reverse" second Peano postulate analogue for reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | ||
| Theorem | negcli 11439 | Closure law for negative. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ -𝐴 ∈ ℂ | ||
| Theorem | negidi 11440 | Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐴) = 0 | ||
| Theorem | negnegi 11441 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ --𝐴 = 𝐴 | ||
| Theorem | subidi 11442 | Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐴) = 0 | ||
| Theorem | subid1i 11443 | Identity law for subtraction. (Contributed by NM, 29-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 0) = 𝐴 | ||
| Theorem | negne0bi 11444 | A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 ↔ -𝐴 ≠ 0) | ||
| Theorem | negrebi 11445 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ) | ||
| Theorem | negne0i 11446 | The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ -𝐴 ≠ 0 | ||
| Theorem | subcli 11447 | Closure law for subtraction. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℂ | ||
| Theorem | pncan3i 11448 | Subtraction and addition of equals. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + (𝐵 − 𝐴)) = 𝐵 | ||
| Theorem | negsubi 11449 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) | ||
| Theorem | subnegi 11450 | Relationship between subtraction and negative. (Contributed by NM, 1-Dec-2005.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) | ||
| Theorem | subeq0i 11451 | If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) | ||
| Theorem | neg11i 11452 | Negative is one-to-one. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵) | ||
| Theorem | negcon1i 11453 | Negative contraposition law. (Contributed by NM, 25-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴) | ||
| Theorem | negcon2i 11454 | Negative contraposition law. (Contributed by NM, 25-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 = -𝐵 ↔ 𝐵 = -𝐴) | ||
| Theorem | negdii 11455 | Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by OpenAI, 25-Mar-2011.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) | ||
| Theorem | negsubdii 11456 | Distribution of negative over subtraction. (Contributed by NM, 6-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ -(𝐴 − 𝐵) = (-𝐴 + 𝐵) | ||
| Theorem | negsubdi2i 11457 | Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ -(𝐴 − 𝐵) = (𝐵 − 𝐴) | ||
| Theorem | subaddi 11458 | Relationship between subtraction and addition. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) | ||
| Theorem | subadd2i 11459 | Relationship between subtraction and addition. (Contributed by NM, 15-Dec-2006.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴) | ||
| Theorem | subaddrii 11460 | Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ (𝐵 + 𝐶) = 𝐴 ⇒ ⊢ (𝐴 − 𝐵) = 𝐶 | ||
| Theorem | subsub23i 11461 | Swap subtrahend and result of subtraction. (Contributed by NM, 7-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵) | ||
| Theorem | addsubassi 11462 | Associative-type law for subtraction and addition. (Contributed by NM, 16-Sep-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶)) | ||
| Theorem | addsubi 11463 | Law for subtraction and addition. (Contributed by NM, 6-Aug-2003.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵) | ||
| Theorem | subcani 11464 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶) | ||
| Theorem | subcan2i 11465 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵) | ||
| Theorem | pnncani 11466 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 14-Jan-2006.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶) | ||
| Theorem | addsub4i 11467 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 17-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷)) | ||
| Theorem | 0reALT 11468 | Alternate proof of 0re 11124. (Contributed by NM, 19-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 0 ∈ ℝ | ||
| Theorem | negcld 11469 | Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℂ) | ||
| Theorem | subidd 11470 | Subtraction of a number from itself. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐴) = 0) | ||
| Theorem | subid1d 11471 | Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − 0) = 𝐴) | ||
| Theorem | negidd 11472 | Addition of a number and its negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + -𝐴) = 0) | ||
| Theorem | negnegd 11473 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → --𝐴 = 𝐴) | ||
| Theorem | negeq0d 11474 | A number is zero iff its negative is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 = 0 ↔ -𝐴 = 0)) | ||
| Theorem | negne0bd 11475 | A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0)) | ||
| Theorem | negcon1d 11476 | Contraposition law for unary minus. Deduction form of negcon1 11423. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) | ||
| Theorem | negcon1ad 11477 | Contraposition law for unary minus. One-way deduction form of negcon1 11423. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → -𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝐵 = 𝐴) | ||
| Theorem | neg11ad 11478 | The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 11422. Generalization of neg11d 11494. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | negned 11479 | If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d 11494. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → -𝐴 ≠ -𝐵) | ||
| Theorem | negne0d 11480 | The negative of a nonzero number is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → -𝐴 ≠ 0) | ||
| Theorem | negrebd 11481 | The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → -𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | subcld 11482 | Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) | ||
| Theorem | pncand 11483 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | ||
| Theorem | pncan2d 11484 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐴) = 𝐵) | ||
| Theorem | pncan3d 11485 | Subtraction and addition of equals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | ||
| Theorem | npcand 11486 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | ||
| Theorem | nncand 11487 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | ||
| Theorem | negsubd 11488 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subnegd 11489 | Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | subeq0d 11490 | If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | subne0d 11491 | Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) | ||
| Theorem | subeq0ad 11492 | The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 11397. Generalization of subeq0d 11490. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
| Theorem | subne0ad 11493 | If the difference of two complex numbers is nonzero, they are unequal. Converse of subne0d 11491. Contrapositive of subeq0bd 11553. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
| Theorem | neg11d 11494 | If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → -𝐴 = -𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | negdid 11495 | Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) | ||
| Theorem | negdi2d 11496 | Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) | ||
| Theorem | negsubdid 11497 | Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | ||
| Theorem | negsubdi2d 11498 | Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | neg2subd 11499 | Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | subaddd 11500 | Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |