| Metamath
Proof Explorer Theorem List (p. 115 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | add12d 11401 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) | ||
| Theorem | add32d 11402 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) | ||
| Theorem | add4d 11403 | Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) | ||
| Theorem | add42d 11404 | Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) | ||
| Syntax | cmin 11405 | Extend class notation to include subtraction. |
| class − | ||
| Syntax | cneg 11406 | Extend class notation to include unary minus. The symbol - is not a class by itself but part of a compound class definition. We do this rather than making it a formal function since it is so commonly used. Note: We use different symbols for unary minus (-) and subtraction cmin 11405 (−) to prevent syntax ambiguity. For example, looking at the syntax definition co 7387, if we used the same symbol then "( − 𝐴 − 𝐵) " could mean either "− 𝐴 " minus "𝐵", or it could represent the (meaningless) operation of classes "− " and "− 𝐵 " connected with "operation" "𝐴". On the other hand, "(-𝐴 − 𝐵) " is unambiguous. |
| class -𝐴 | ||
| Definition | df-sub 11407* | Define subtraction. Theorem subval 11412 shows its value (and describes how this definition works), Theorem subaddi 11509 relates it to addition, and Theorems subcli 11498 and resubcli 11484 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | ||
| Definition | df-neg 11408 | Define the negative of a number (unary minus). We use different symbols for unary minus (-) and subtraction (−) to prevent syntax ambiguity. See cneg 11406 for a discussion of this. (Contributed by NM, 10-Feb-1995.) |
| ⊢ -𝐴 = (0 − 𝐴) | ||
| Theorem | 0cnALT 11409 | Alternate proof of 0cn 11166 which does not reference ax-1cn 11126. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | 0cnALT2 11410 | Alternate proof of 0cnALT 11409 which is shorter, but depends on ax-8 2111, ax-13 2370, ax-sep 5251, ax-nul 5261, ax-pow 5320, ax-pr 5387, ax-un 7711, and every complex number axiom except ax-pre-mulgt0 11145 and ax-pre-sup 11146. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | negeu 11411* | Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | ||
| Theorem | subval 11412* | Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | ||
| Theorem | negeq 11413 | Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | ||
| Theorem | negeqi 11414 | Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ -𝐴 = -𝐵 | ||
| Theorem | negeqd 11415 | Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝐴 = -𝐵) | ||
| Theorem | nfnegd 11416 | Deduction version of nfneg 11417. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥-𝐴) | ||
| Theorem | nfneg 11417 | Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥-𝐴 | ||
| Theorem | csbnegg 11418 | Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) | ||
| Theorem | negex 11419 | A negative is a set. (Contributed by NM, 4-Apr-2005.) |
| ⊢ -𝐴 ∈ V | ||
| Theorem | subcl 11420 | Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
| Theorem | negcl 11421 | Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | ||
| Theorem | negicn 11422 | -i is a complex number. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| ⊢ -i ∈ ℂ | ||
| Theorem | subf 11423 | Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ − :(ℂ × ℂ)⟶ℂ | ||
| Theorem | subadd 11424 | Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
| Theorem | subadd2 11425 | Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)) | ||
| Theorem | subsub23 11426 | Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) | ||
| Theorem | pncan 11427 | Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | ||
| Theorem | pncan2 11428 | Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) | ||
| Theorem | pncan3 11429 | Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | ||
| Theorem | npcan 11430 | Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | ||
| Theorem | addsubass 11431 | Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) | ||
| Theorem | addsub 11432 | Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | ||
| Theorem | subadd23 11433 | Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐶) = (𝐴 + (𝐶 − 𝐵))) | ||
| Theorem | addsub12 11434 | Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) | ||
| Theorem | 2addsub 11435 | Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) + 𝐶) − 𝐷) = (((𝐴 + 𝐶) − 𝐷) + 𝐵)) | ||
| Theorem | addsubeq4 11436 | Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶 − 𝐴) = (𝐵 − 𝐷))) | ||
| Theorem | pncan3oi 11437 | Subtraction and addition of equals. Almost but not exactly the same as pncan3i 11499 and pncan 11427, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 11534. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐵) = 𝐴 | ||
| Theorem | mvrraddi 11438 | Move the right term in a sum on the RHS to the LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐴 = (𝐵 + 𝐶) ⇒ ⊢ (𝐴 − 𝐶) = 𝐵 | ||
| Theorem | mvrladdi 11439 | Move the left term in a sum on the RHS to the LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐴 = (𝐵 + 𝐶) ⇒ ⊢ (𝐴 − 𝐵) = 𝐶 | ||
| Theorem | mvlladdi 11440 | Move the left term in a sum on the LHS to the RHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ 𝐵 = (𝐶 − 𝐴) | ||
| Theorem | subid 11441 | Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 − 𝐴) = 0) | ||
| Theorem | subid1 11442 | Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | ||
| Theorem | npncan 11443 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) | ||
| Theorem | nppcan 11444 | Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶)) | ||
| Theorem | nnpcan 11445 | Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) − 𝐶) + 𝐵) = (𝐴 − 𝐶)) | ||
| Theorem | nppcan3 11446 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶)) | ||
| Theorem | subcan2 11447 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | subeq0 11448 | If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
| Theorem | npncan2 11449 | Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐴)) = 0) | ||
| Theorem | subsub2 11450 | Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) | ||
| Theorem | nncan 11451 | Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | ||
| Theorem | subsub 11452 | Law for double subtraction. (Contributed by NM, 13-May-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | ||
| Theorem | nppcan2 11453 | Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) | ||
| Theorem | subsub3 11454 | Law for double subtraction. (Contributed by NM, 27-Jul-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) | ||
| Theorem | subsub4 11455 | Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) | ||
| Theorem | sub32 11456 | Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) | ||
| Theorem | nnncan 11457 | Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) | ||
| Theorem | nnncan1 11458 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) | ||
| Theorem | nnncan2 11459 | Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) | ||
| Theorem | npncan3 11460 | Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) | ||
| Theorem | pnpcan 11461 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by SN, 13-Nov-2023.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) | ||
| Theorem | pnpcan2 11462 | Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) | ||
| Theorem | pnncan 11463 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) | ||
| Theorem | ppncan 11464 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) | ||
| Theorem | addsub4 11465 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷))) | ||
| Theorem | subadd4 11466 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶))) | ||
| Theorem | sub4 11467 | Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 − 𝐶) − (𝐵 − 𝐷))) | ||
| Theorem | neg0 11468 | Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| ⊢ -0 = 0 | ||
| Theorem | negid 11469 | Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | ||
| Theorem | negsub 11470 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subneg 11471 | Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | negneg 11472 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | ||
| Theorem | neg11 11473 | Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | negcon1 11474 | Negative contraposition law. (Contributed by NM, 9-May-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) | ||
| Theorem | negcon2 11475 | Negative contraposition law. (Contributed by NM, 14-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = -𝐵 ↔ 𝐵 = -𝐴)) | ||
| Theorem | negeq0 11476 | A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) | ||
| Theorem | subcan 11477 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | negsubdi 11478 | Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | ||
| Theorem | negdi 11479 | Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) | ||
| Theorem | negdi2 11480 | Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) | ||
| Theorem | negsubdi2 11481 | Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | neg2sub 11482 | Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | renegcli 11483 | Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 11485 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ -𝐴 ∈ ℝ | ||
| Theorem | resubcli 11484 | Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℝ | ||
| Theorem | renegcl 11485 | Closure law for negative of reals. The weak deduction theorem dedth 4547 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11483, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | ||
| Theorem | resubcl 11486 | Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | ||
| Theorem | negreb 11487 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) | ||
| Theorem | peano2cnm 11488 | "Reverse" second Peano postulate analogue for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | ||
| Theorem | peano2rem 11489 | "Reverse" second Peano postulate analogue for reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | ||
| Theorem | negcli 11490 | Closure law for negative. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ -𝐴 ∈ ℂ | ||
| Theorem | negidi 11491 | Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐴) = 0 | ||
| Theorem | negnegi 11492 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ --𝐴 = 𝐴 | ||
| Theorem | subidi 11493 | Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐴) = 0 | ||
| Theorem | subid1i 11494 | Identity law for subtraction. (Contributed by NM, 29-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 0) = 𝐴 | ||
| Theorem | negne0bi 11495 | A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 ↔ -𝐴 ≠ 0) | ||
| Theorem | negrebi 11496 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ) | ||
| Theorem | negne0i 11497 | The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ -𝐴 ≠ 0 | ||
| Theorem | subcli 11498 | Closure law for subtraction. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℂ | ||
| Theorem | pncan3i 11499 | Subtraction and addition of equals. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + (𝐵 − 𝐴)) = 𝐵 | ||
| Theorem | negsubi 11500 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |