| Metamath
Proof Explorer Theorem List (p. 115 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | add32r 11401 | Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = ((𝐴 + 𝐶) + 𝐵)) | ||
| Theorem | add4 11402 | Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) | ||
| Theorem | add42 11403 | Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) | ||
| Theorem | add12i 11404 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) | ||
| Theorem | add32i 11405 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) | ||
| Theorem | add4i 11406 | Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) | ||
| Theorem | add42i 11407 | Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) | ||
| Theorem | add12d 11408 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) | ||
| Theorem | add32d 11409 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) | ||
| Theorem | add4d 11410 | Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) | ||
| Theorem | add42d 11411 | Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) | ||
| Syntax | cmin 11412 | Extend class notation to include subtraction. |
| class − | ||
| Syntax | cneg 11413 | Extend class notation to include unary minus. The symbol - is not a class by itself but part of a compound class definition. We do this rather than making it a formal function since it is so commonly used. Note: We use different symbols for unary minus (-) and subtraction cmin 11412 (−) to prevent syntax ambiguity. For example, looking at the syntax definition co 7390, if we used the same symbol then "( − 𝐴 − 𝐵) " could mean either "− 𝐴 " minus "𝐵", or it could represent the (meaningless) operation of classes "− " and "− 𝐵 " connected with "operation" "𝐴". On the other hand, "(-𝐴 − 𝐵) " is unambiguous. |
| class -𝐴 | ||
| Definition | df-sub 11414* | Define subtraction. Theorem subval 11419 shows its value (and describes how this definition works), Theorem subaddi 11516 relates it to addition, and Theorems subcli 11505 and resubcli 11491 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
| ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | ||
| Definition | df-neg 11415 | Define the negative of a number (unary minus). We use different symbols for unary minus (-) and subtraction (−) to prevent syntax ambiguity. See cneg 11413 for a discussion of this. (Contributed by NM, 10-Feb-1995.) |
| ⊢ -𝐴 = (0 − 𝐴) | ||
| Theorem | 0cnALT 11416 | Alternate proof of 0cn 11173 which does not reference ax-1cn 11133. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | 0cnALT2 11417 | Alternate proof of 0cnALT 11416 which is shorter, but depends on ax-8 2111, ax-13 2371, ax-sep 5254, ax-nul 5264, ax-pow 5323, ax-pr 5390, ax-un 7714, and every complex number axiom except ax-pre-mulgt0 11152 and ax-pre-sup 11153. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | negeu 11418* | Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | ||
| Theorem | subval 11419* | Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | ||
| Theorem | negeq 11420 | Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | ||
| Theorem | negeqi 11421 | Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ -𝐴 = -𝐵 | ||
| Theorem | negeqd 11422 | Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝐴 = -𝐵) | ||
| Theorem | nfnegd 11423 | Deduction version of nfneg 11424. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥-𝐴) | ||
| Theorem | nfneg 11424 | Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥-𝐴 | ||
| Theorem | csbnegg 11425 | Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) | ||
| Theorem | negex 11426 | A negative is a set. (Contributed by NM, 4-Apr-2005.) |
| ⊢ -𝐴 ∈ V | ||
| Theorem | subcl 11427 | Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
| Theorem | negcl 11428 | Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | ||
| Theorem | negicn 11429 | -i is a complex number. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| ⊢ -i ∈ ℂ | ||
| Theorem | subf 11430 | Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ − :(ℂ × ℂ)⟶ℂ | ||
| Theorem | subadd 11431 | Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
| Theorem | subadd2 11432 | Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)) | ||
| Theorem | subsub23 11433 | Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) | ||
| Theorem | pncan 11434 | Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | ||
| Theorem | pncan2 11435 | Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) | ||
| Theorem | pncan3 11436 | Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | ||
| Theorem | npcan 11437 | Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | ||
| Theorem | addsubass 11438 | Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) | ||
| Theorem | addsub 11439 | Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | ||
| Theorem | subadd23 11440 | Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐶) = (𝐴 + (𝐶 − 𝐵))) | ||
| Theorem | addsub12 11441 | Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) | ||
| Theorem | 2addsub 11442 | Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) + 𝐶) − 𝐷) = (((𝐴 + 𝐶) − 𝐷) + 𝐵)) | ||
| Theorem | addsubeq4 11443 | Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶 − 𝐴) = (𝐵 − 𝐷))) | ||
| Theorem | pncan3oi 11444 | Subtraction and addition of equals. Almost but not exactly the same as pncan3i 11506 and pncan 11434, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 11541. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐵) = 𝐴 | ||
| Theorem | mvrraddi 11445 | Move the right term in a sum on the RHS to the LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐴 = (𝐵 + 𝐶) ⇒ ⊢ (𝐴 − 𝐶) = 𝐵 | ||
| Theorem | mvrladdi 11446 | Move the left term in a sum on the RHS to the LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐴 = (𝐵 + 𝐶) ⇒ ⊢ (𝐴 − 𝐵) = 𝐶 | ||
| Theorem | mvlladdi 11447 | Move the left term in a sum on the LHS to the RHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ 𝐵 = (𝐶 − 𝐴) | ||
| Theorem | subid 11448 | Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 − 𝐴) = 0) | ||
| Theorem | subid1 11449 | Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | ||
| Theorem | npncan 11450 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) | ||
| Theorem | nppcan 11451 | Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶)) | ||
| Theorem | nnpcan 11452 | Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) − 𝐶) + 𝐵) = (𝐴 − 𝐶)) | ||
| Theorem | nppcan3 11453 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶)) | ||
| Theorem | subcan2 11454 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | subeq0 11455 | If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
| Theorem | npncan2 11456 | Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐴)) = 0) | ||
| Theorem | subsub2 11457 | Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) | ||
| Theorem | nncan 11458 | Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | ||
| Theorem | subsub 11459 | Law for double subtraction. (Contributed by NM, 13-May-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | ||
| Theorem | nppcan2 11460 | Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) | ||
| Theorem | subsub3 11461 | Law for double subtraction. (Contributed by NM, 27-Jul-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) | ||
| Theorem | subsub4 11462 | Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) | ||
| Theorem | sub32 11463 | Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) | ||
| Theorem | nnncan 11464 | Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) | ||
| Theorem | nnncan1 11465 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) | ||
| Theorem | nnncan2 11466 | Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) | ||
| Theorem | npncan3 11467 | Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) | ||
| Theorem | pnpcan 11468 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by SN, 13-Nov-2023.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) | ||
| Theorem | pnpcan2 11469 | Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) | ||
| Theorem | pnncan 11470 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) | ||
| Theorem | ppncan 11471 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) | ||
| Theorem | addsub4 11472 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷))) | ||
| Theorem | subadd4 11473 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶))) | ||
| Theorem | sub4 11474 | Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 − 𝐶) − (𝐵 − 𝐷))) | ||
| Theorem | neg0 11475 | Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| ⊢ -0 = 0 | ||
| Theorem | negid 11476 | Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | ||
| Theorem | negsub 11477 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subneg 11478 | Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | negneg 11479 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | ||
| Theorem | neg11 11480 | Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | negcon1 11481 | Negative contraposition law. (Contributed by NM, 9-May-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) | ||
| Theorem | negcon2 11482 | Negative contraposition law. (Contributed by NM, 14-Nov-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = -𝐵 ↔ 𝐵 = -𝐴)) | ||
| Theorem | negeq0 11483 | A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) | ||
| Theorem | subcan 11484 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | negsubdi 11485 | Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | ||
| Theorem | negdi 11486 | Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) | ||
| Theorem | negdi2 11487 | Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) | ||
| Theorem | negsubdi2 11488 | Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | neg2sub 11489 | Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) | ||
| Theorem | renegcli 11490 | Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 11492 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ -𝐴 ∈ ℝ | ||
| Theorem | resubcli 11491 | Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℝ | ||
| Theorem | renegcl 11492 | Closure law for negative of reals. The weak deduction theorem dedth 4550 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11490, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | ||
| Theorem | resubcl 11493 | Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | ||
| Theorem | negreb 11494 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) | ||
| Theorem | peano2cnm 11495 | "Reverse" second Peano postulate analogue for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | ||
| Theorem | peano2rem 11496 | "Reverse" second Peano postulate analogue for reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | ||
| Theorem | negcli 11497 | Closure law for negative. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ -𝐴 ∈ ℂ | ||
| Theorem | negidi 11498 | Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐴) = 0 | ||
| Theorem | negnegi 11499 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ --𝐴 = 𝐴 | ||
| Theorem | subidi 11500 | Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐴) = 0 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |