MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subf Structured version   Visualization version   GIF version

Theorem subf 11423
Description: Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
subf − :(ℂ × ℂ)⟶ℂ

Proof of Theorem subf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subval 11412 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) = (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
2 subcl 11420 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
31, 2eqeltrrd 2829 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ)
43rgen2 3177 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ
5 df-sub 11407 . . 3 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
65fmpo 8047 . 2 (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ ↔ − :(ℂ × ℂ)⟶ℂ)
74, 6mpbi 230 1 − :(ℂ × ℂ)⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3044   × cxp 5636  wf 6507  crio 7343  (class class class)co 7387  cc 11066   + caddc 11071  cmin 11405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407
This theorem is referenced by:  dfz2  12548  zexALT  12549  rlimsub  15610  znnen  16180  cnfldds  21276  cnfldfun  21278  cnfldfunALT  21279  cnflddsOLD  21289  cnfldfunOLD  21291  cnfldfunALTOLD  21292  cnfldsub  21309  cnmetdval  24658  cnmet  24659  cnfldms  24663  subcn  24755  cnfldcusp  25257  ovolfsf  25372  ovolctb  25391  dvlip2  25900  cnnvm  30611  mblfinlem2  37652  subex  42235  sblpnf  44299  fourierdlem42  46147  ovolval2lem  46641  ovolval2  46642  ovolval3  46645
  Copyright terms: Public domain W3C validator