MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subf Structured version   Visualization version   GIF version

Theorem subf 11511
Description: Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
subf − :(ℂ × ℂ)⟶ℂ

Proof of Theorem subf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subval 11500 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) = (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
2 subcl 11508 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) ∈ ℂ)
31, 2eqeltrrd 2841 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ)
43rgen2 3198 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ
5 df-sub 11495 . . 3 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
65fmpo 8094 . 2 (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ ↔ − :(ℂ × ℂ)⟶ℂ)
74, 6mpbi 230 1 − :(ℂ × ℂ)⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107  wral 3060   × cxp 5682  wf 6556  crio 7388  (class class class)co 7432  cc 11154   + caddc 11159  cmin 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-sub 11495
This theorem is referenced by:  dfz2  12634  zexALT  12635  rlimsub  15681  znnen  16249  cnfldds  21377  cnfldfun  21379  cnfldfunALT  21380  cnflddsOLD  21390  cnfldfunOLD  21392  cnfldfunALTOLD  21393  cnfldfunALTOLDOLD  21394  cnfldsub  21411  cnmetdval  24792  cnmet  24793  cnfldms  24797  subcn  24889  cnfldcusp  25392  ovolfsf  25507  ovolctb  25526  dvlip2  26035  cnnvm  30702  mblfinlem2  37666  subex  42288  sblpnf  44334  fourierdlem42  46169  ovolval2lem  46663  ovolval2  46664  ovolval3  46667
  Copyright terms: Public domain W3C validator