|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > subf | Structured version Visualization version GIF version | ||
| Description: Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| subf | ⊢ − :(ℂ × ℂ)⟶ℂ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subval 11500 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) = (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
| 2 | subcl 11508 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) | |
| 3 | 1, 2 | eqeltrrd 2841 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ) | 
| 4 | 3 | rgen2 3198 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ | 
| 5 | df-sub 11495 | . . 3 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
| 6 | 5 | fmpo 8094 | . 2 ⊢ (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ ↔ − :(ℂ × ℂ)⟶ℂ) | 
| 7 | 4, 6 | mpbi 230 | 1 ⊢ − :(ℂ × ℂ)⟶ℂ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 × cxp 5682 ⟶wf 6556 ℩crio 7388 (class class class)co 7432 ℂcc 11154 + caddc 11159 − cmin 11493 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 df-sub 11495 | 
| This theorem is referenced by: dfz2 12634 zexALT 12635 rlimsub 15681 znnen 16249 cnfldds 21377 cnfldfun 21379 cnfldfunALT 21380 cnflddsOLD 21390 cnfldfunOLD 21392 cnfldfunALTOLD 21393 cnfldfunALTOLDOLD 21394 cnfldsub 21411 cnmetdval 24792 cnmet 24793 cnfldms 24797 subcn 24889 cnfldcusp 25392 ovolfsf 25507 ovolctb 25526 dvlip2 26035 cnnvm 30702 mblfinlem2 37666 subex 42288 sblpnf 44334 fourierdlem42 46169 ovolval2lem 46663 ovolval2 46664 ovolval3 46667 | 
| Copyright terms: Public domain | W3C validator |