Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subf | Structured version Visualization version GIF version |
Description: Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
subf | ⊢ − :(ℂ × ℂ)⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subval 10915 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) = (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
2 | subcl 10923 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) | |
3 | 1, 2 | eqeltrrd 2853 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ) |
4 | 3 | rgen2 3132 | . 2 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ |
5 | df-sub 10910 | . . 3 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | |
6 | 5 | fmpo 7770 | . 2 ⊢ (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) ∈ ℂ ↔ − :(ℂ × ℂ)⟶ℂ) |
7 | 4, 6 | mpbi 233 | 1 ⊢ − :(ℂ × ℂ)⟶ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 × cxp 5522 ⟶wf 6331 ℩crio 7107 (class class class)co 7150 ℂcc 10573 + caddc 10578 − cmin 10908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-ltxr 10718 df-sub 10910 |
This theorem is referenced by: dfz2 12039 zexALT 12040 rlimsub 15048 znnen 15613 cnfldds 20176 cnfldfun 20178 cnfldfunALT 20179 cnfldsub 20194 cnmetdval 23472 cnmet 23473 cnfldms 23477 subcn 23567 cnfldcusp 24057 ovolfsf 24171 ovolctb 24190 dvlip2 24694 cnnvm 28564 mblfinlem2 35375 sblpnf 41387 fourierdlem42 43157 ovolval2lem 43648 ovolval2 43649 ovolval3 43652 |
Copyright terms: Public domain | W3C validator |