Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subval | Structured version Visualization version GIF version |
Description: Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.) |
Ref | Expression |
---|---|
subval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2750 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴)) | |
2 | 1 | riotabidv 7129 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦) = (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴)) |
3 | oveq1 7177 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥)) | |
4 | 3 | eqeq1d 2740 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴)) |
5 | 4 | riotabidv 7129 | . 2 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
6 | df-sub 10950 | . 2 ⊢ − = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (℩𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦)) | |
7 | riotaex 7131 | . 2 ⊢ (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ V | |
8 | 2, 5, 6, 7 | ovmpo 7325 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ℩crio 7126 (class class class)co 7170 ℂcc 10613 + caddc 10618 − cmin 10948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-sub 10950 |
This theorem is referenced by: subcl 10963 subf 10966 subadd 10967 sn-subcl 40006 sn-subf 40007 resubeqsub 40008 |
Copyright terms: Public domain | W3C validator |