MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subval Structured version   Visualization version   GIF version

Theorem subval 11358
Description: Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
subval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem subval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2745 . . 3 (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴))
21riotabidv 7311 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦) = (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴))
3 oveq1 7359 . . . 4 (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥))
43eqeq1d 2735 . . 3 (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴))
54riotabidv 7311 . 2 (𝑧 = 𝐵 → (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
6 df-sub 11353 . 2 − = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑥 ∈ ℂ (𝑧 + 𝑥) = 𝑦))
7 riotaex 7313 . 2 (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) ∈ V
82, 5, 6, 7ovmpo 7512 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  crio 7308  (class class class)co 7352  cc 11011   + caddc 11016  cmin 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-sub 11353
This theorem is referenced by:  subcl  11366  subf  11369  subadd  11370  sn-subcl  42546  sn-subf  42547  resubeqsub  42548
  Copyright terms: Public domain W3C validator