Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-swapf Structured version   Visualization version   GIF version

Definition df-swapf 49222
Description: Define the swap functor from (𝐶 ×c 𝐷) to (𝐷 ×c 𝐶) by swapping all objects (swapf1 49234) and morphisms (swapf2 49236) .

Such functor is called a "swap functor" in https://arxiv.org/pdf/2302.07810 49236 or a "twist functor" in https://arxiv.org/pdf/2508.01886 49236, the latter of which finds its counterpart as "twisting map" in https://arxiv.org/pdf/2411.04102 49236 for tensor product of algebras. The "swap functor" or "twisting map" is often denoted as a small tau 𝜏 in literature. However, the term "twist functor" is defined differently in https://arxiv.org/pdf/1208.4046 49236 and thus not adopted here.

tpos I depends on more mathbox theorems, and thus are not adopted here. See dfswapf2 49223 for an alternate definition.

(Contributed by Zhi Wang, 7-Oct-2025.)

Assertion
Ref Expression
df-swapf swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
Distinct variable group:   𝑏,𝑐,𝑑,,𝑠,𝑢,𝑣,𝑥,𝑓

Detailed syntax breakdown of Definition df-swapf
StepHypRef Expression
1 cswapf 49221 . 2 class swapF
2 vc . . 3 setvar 𝑐
3 vd . . 3 setvar 𝑑
4 cvv 3444 . . 3 class V
5 vs . . . 4 setvar 𝑠
62cv 1539 . . . . 5 class 𝑐
73cv 1539 . . . . 5 class 𝑑
8 cxpc 18105 . . . . 5 class ×c
96, 7, 8co 7369 . . . 4 class (𝑐 ×c 𝑑)
10 vb . . . . 5 setvar 𝑏
115cv 1539 . . . . . 6 class 𝑠
12 cbs 17155 . . . . . 6 class Base
1311, 12cfv 6499 . . . . 5 class (Base‘𝑠)
14 vh . . . . . 6 setvar
15 chom 17207 . . . . . . 7 class Hom
1611, 15cfv 6499 . . . . . 6 class (Hom ‘𝑠)
17 vx . . . . . . . 8 setvar 𝑥
1810cv 1539 . . . . . . . 8 class 𝑏
1917cv 1539 . . . . . . . . . . 11 class 𝑥
2019csn 4585 . . . . . . . . . 10 class {𝑥}
2120ccnv 5630 . . . . . . . . 9 class {𝑥}
2221cuni 4867 . . . . . . . 8 class {𝑥}
2317, 18, 22cmpt 5183 . . . . . . 7 class (𝑥𝑏 {𝑥})
24 vu . . . . . . . 8 setvar 𝑢
25 vv . . . . . . . 8 setvar 𝑣
26 vf . . . . . . . . 9 setvar 𝑓
2724cv 1539 . . . . . . . . . 10 class 𝑢
2825cv 1539 . . . . . . . . . 10 class 𝑣
2914cv 1539 . . . . . . . . . 10 class
3027, 28, 29co 7369 . . . . . . . . 9 class (𝑢𝑣)
3126cv 1539 . . . . . . . . . . . 12 class 𝑓
3231csn 4585 . . . . . . . . . . 11 class {𝑓}
3332ccnv 5630 . . . . . . . . . 10 class {𝑓}
3433cuni 4867 . . . . . . . . 9 class {𝑓}
3526, 30, 34cmpt 5183 . . . . . . . 8 class (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})
3624, 25, 18, 18, 35cmpo 7371 . . . . . . 7 class (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))
3723, 36cop 4591 . . . . . 6 class ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
3814, 16, 37csb 3859 . . . . 5 class (Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
3910, 13, 38csb 3859 . . . 4 class (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
405, 9, 39csb 3859 . . 3 class (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
412, 3, 4, 4, 40cmpo 7371 . 2 class (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
421, 41wceq 1540 1 wff swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
Colors of variables: wff setvar class
This definition is referenced by:  dfswapf2  49223  swapfval  49224
  Copyright terms: Public domain W3C validator