Detailed syntax breakdown of Definition df-swapf
| Step | Hyp | Ref
| Expression |
| 1 | | cswapf 48938 |
. 2
class
swapF |
| 2 | | vc |
. . 3
setvar 𝑐 |
| 3 | | vd |
. . 3
setvar 𝑑 |
| 4 | | cvv 3479 |
. . 3
class
V |
| 5 | | vs |
. . . 4
setvar 𝑠 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑐 |
| 7 | 3 | cv 1539 |
. . . . 5
class 𝑑 |
| 8 | | cxpc 18209 |
. . . . 5
class
×c |
| 9 | 6, 7, 8 | co 7429 |
. . . 4
class (𝑐 ×c
𝑑) |
| 10 | | vb |
. . . . 5
setvar 𝑏 |
| 11 | 5 | cv 1539 |
. . . . . 6
class 𝑠 |
| 12 | | cbs 17243 |
. . . . . 6
class
Base |
| 13 | 11, 12 | cfv 6559 |
. . . . 5
class
(Base‘𝑠) |
| 14 | | vh |
. . . . . 6
setvar ℎ |
| 15 | | chom 17304 |
. . . . . . 7
class
Hom |
| 16 | 11, 15 | cfv 6559 |
. . . . . 6
class (Hom
‘𝑠) |
| 17 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 18 | 10 | cv 1539 |
. . . . . . . 8
class 𝑏 |
| 19 | 17 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 20 | 19 | csn 4624 |
. . . . . . . . . 10
class {𝑥} |
| 21 | 20 | ccnv 5682 |
. . . . . . . . 9
class ◡{𝑥} |
| 22 | 21 | cuni 4905 |
. . . . . . . 8
class ∪ ◡{𝑥} |
| 23 | 17, 18, 22 | cmpt 5223 |
. . . . . . 7
class (𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}) |
| 24 | | vu |
. . . . . . . 8
setvar 𝑢 |
| 25 | | vv |
. . . . . . . 8
setvar 𝑣 |
| 26 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 27 | 24 | cv 1539 |
. . . . . . . . . 10
class 𝑢 |
| 28 | 25 | cv 1539 |
. . . . . . . . . 10
class 𝑣 |
| 29 | 14 | cv 1539 |
. . . . . . . . . 10
class ℎ |
| 30 | 27, 28, 29 | co 7429 |
. . . . . . . . 9
class (𝑢ℎ𝑣) |
| 31 | 26 | cv 1539 |
. . . . . . . . . . . 12
class 𝑓 |
| 32 | 31 | csn 4624 |
. . . . . . . . . . 11
class {𝑓} |
| 33 | 32 | ccnv 5682 |
. . . . . . . . . 10
class ◡{𝑓} |
| 34 | 33 | cuni 4905 |
. . . . . . . . 9
class ∪ ◡{𝑓} |
| 35 | 26, 30, 34 | cmpt 5223 |
. . . . . . . 8
class (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}) |
| 36 | 24, 25, 18, 18, 35 | cmpo 7431 |
. . . . . . 7
class (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓})) |
| 37 | 23, 36 | cop 4630 |
. . . . . 6
class
〈(𝑥 ∈
𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 38 | 14, 16, 37 | csb 3898 |
. . . . 5
class
⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 39 | 10, 13, 38 | csb 3898 |
. . . 4
class
⦋(Base‘𝑠) / 𝑏⦌⦋(Hom
‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 40 | 5, 9, 39 | csb 3898 |
. . 3
class
⦋(𝑐
×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 41 | 2, 3, 4, 4, 40 | cmpo 7431 |
. 2
class (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c
𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 42 | 1, 41 | wceq 1540 |
1
wff
swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c
𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |