Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapfval Structured version   Visualization version   GIF version

Theorem swapfval 48941
Description: Value of the swap functor. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapfval.s 𝑆 = (𝐶 ×c 𝐷)
swapfval.b 𝐵 = (Base‘𝑆)
swapfval.h (𝜑𝐻 = (Hom ‘𝑆))
Assertion
Ref Expression
swapfval (𝜑 → (𝐶swapF𝐷) = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
Distinct variable groups:   𝑢,𝐵,𝑣,𝑥   𝑢,𝐶,𝑣   𝑢,𝐷,𝑣   𝑓,𝐻,𝑢,𝑣   𝑢,𝑆,𝑣   𝜑,𝑢,𝑣   𝑥,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑓)   𝐶(𝑥,𝑓)   𝐷(𝑥,𝑓)   𝑆(𝑥,𝑓)   𝑈(𝑥,𝑣,𝑢,𝑓)   𝐻(𝑥)   𝑉(𝑥,𝑣,𝑢,𝑓)

Proof of Theorem swapfval
Dummy variables 𝑏 𝑐 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-swapf 48939 . . 3 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
21a1i 11 . 2 (𝜑 → swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩))
3 ovexd 7464 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 ×c 𝑑) ∈ V)
4 simprl 771 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑐 = 𝐶)
5 simprr 773 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑑 = 𝐷)
64, 5oveq12d 7447 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷))
7 swapfval.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
86, 7eqtr4di 2794 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 ×c 𝑑) = 𝑆)
9 fvexd 6919 . . . 4 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) ∈ V)
10 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
1110fveq2d 6908 . . . . 5 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) = (Base‘𝑆))
12 swapfval.b . . . . 5 𝐵 = (Base‘𝑆)
1311, 12eqtr4di 2794 . . . 4 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) = 𝐵)
14 fvexd 6919 . . . . 5 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) ∈ V)
15 simplr 769 . . . . . . 7 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → 𝑠 = 𝑆)
1615fveq2d 6908 . . . . . 6 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) = (Hom ‘𝑆))
17 swapfval.h . . . . . . 7 (𝜑𝐻 = (Hom ‘𝑆))
1817ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → 𝐻 = (Hom ‘𝑆))
1916, 18eqtr4d 2779 . . . . 5 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) = 𝐻)
20 simplr 769 . . . . . . 7 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → 𝑏 = 𝐵)
2120mpteq1d 5235 . . . . . 6 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → (𝑥𝑏 {𝑥}) = (𝑥𝐵 {𝑥}))
22 simpr 484 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → = 𝐻)
2322oveqd 7446 . . . . . . . 8 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → (𝑢𝑣) = (𝑢𝐻𝑣))
2423mpteq1d 5235 . . . . . . 7 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))
2520, 20, 24mpoeq123dv 7506 . . . . . 6 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
2621, 25opeq12d 4879 . . . . 5 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
2714, 19, 26csbied2 3935 . . . 4 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
289, 13, 27csbied2 3935 . . 3 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
293, 8, 28csbied2 3935 . 2 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
30 swapfval.c . . 3 (𝜑𝐶𝑈)
3130elexd 3503 . 2 (𝜑𝐶 ∈ V)
32 swapfval.d . . 3 (𝜑𝐷𝑉)
3332elexd 3503 . 2 (𝜑𝐷 ∈ V)
34 opex 5467 . . 3 ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩ ∈ V
3534a1i 11 . 2 (𝜑 → ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩ ∈ V)
362, 29, 31, 33, 35ovmpod 7582 1 (𝜑 → (𝐶swapF𝐷) = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3479  csb 3898  {csn 4624  cop 4630   cuni 4905  cmpt 5223  ccnv 5682  cfv 6559  (class class class)co 7429  cmpo 7431  Basecbs 17243  Hom chom 17304   ×c cxpc 18209  swapFcswapf 48938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-iota 6512  df-fun 6561  df-fv 6567  df-ov 7432  df-oprab 7433  df-mpo 7434  df-swapf 48939
This theorem is referenced by:  swapfelvv  48942  swapf2fvala  48943  swapf1vala  48945
  Copyright terms: Public domain W3C validator