Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapfval Structured version   Visualization version   GIF version

Theorem swapfval 49013
Description: Value of the swap functor. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapfval.s 𝑆 = (𝐶 ×c 𝐷)
swapfval.b 𝐵 = (Base‘𝑆)
swapfval.h (𝜑𝐻 = (Hom ‘𝑆))
Assertion
Ref Expression
swapfval (𝜑 → (𝐶swapF𝐷) = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
Distinct variable groups:   𝑢,𝐵,𝑣,𝑥   𝑢,𝐶,𝑣   𝑢,𝐷,𝑣   𝑓,𝐻,𝑢,𝑣   𝑢,𝑆,𝑣   𝜑,𝑢,𝑣   𝑥,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑓)   𝐶(𝑥,𝑓)   𝐷(𝑥,𝑓)   𝑆(𝑥,𝑓)   𝑈(𝑥,𝑣,𝑢,𝑓)   𝐻(𝑥)   𝑉(𝑥,𝑣,𝑢,𝑓)

Proof of Theorem swapfval
Dummy variables 𝑏 𝑐 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-swapf 49011 . . 3 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
21a1i 11 . 2 (𝜑 → swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩))
3 ovexd 7448 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 ×c 𝑑) ∈ V)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑐 = 𝐶)
5 simprr 772 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → 𝑑 = 𝐷)
64, 5oveq12d 7431 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷))
7 swapfval.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
86, 7eqtr4di 2787 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 ×c 𝑑) = 𝑆)
9 fvexd 6901 . . . 4 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) ∈ V)
10 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
1110fveq2d 6890 . . . . 5 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) = (Base‘𝑆))
12 swapfval.b . . . . 5 𝐵 = (Base‘𝑆)
1311, 12eqtr4di 2787 . . . 4 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) = 𝐵)
14 fvexd 6901 . . . . 5 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) ∈ V)
15 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → 𝑠 = 𝑆)
1615fveq2d 6890 . . . . . 6 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) = (Hom ‘𝑆))
17 swapfval.h . . . . . . 7 (𝜑𝐻 = (Hom ‘𝑆))
1817ad3antrrr 730 . . . . . 6 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → 𝐻 = (Hom ‘𝑆))
1916, 18eqtr4d 2772 . . . . 5 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) = 𝐻)
20 simplr 768 . . . . . . 7 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → 𝑏 = 𝐵)
2120mpteq1d 5217 . . . . . 6 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → (𝑥𝑏 {𝑥}) = (𝑥𝐵 {𝑥}))
22 simpr 484 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → = 𝐻)
2322oveqd 7430 . . . . . . . 8 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → (𝑢𝑣) = (𝑢𝐻𝑣))
2423mpteq1d 5217 . . . . . . 7 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))
2520, 20, 24mpoeq123dv 7490 . . . . . 6 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
2621, 25opeq12d 4861 . . . . 5 (((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ = 𝐻) → ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
2714, 19, 26csbied2 3916 . . . 4 ((((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
289, 13, 27csbied2 3916 . . 3 (((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
293, 8, 28csbied2 3916 . 2 ((𝜑 ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
30 swapfval.c . . 3 (𝜑𝐶𝑈)
3130elexd 3487 . 2 (𝜑𝐶 ∈ V)
32 swapfval.d . . 3 (𝜑𝐷𝑉)
3332elexd 3487 . 2 (𝜑𝐷 ∈ V)
34 opex 5449 . . 3 ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩ ∈ V
3534a1i 11 . 2 (𝜑 → ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩ ∈ V)
362, 29, 31, 33, 35ovmpod 7567 1 (𝜑 → (𝐶swapF𝐷) = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  csb 3879  {csn 4606  cop 4612   cuni 4887  cmpt 5205  ccnv 5664  cfv 6541  (class class class)co 7413  cmpo 7415  Basecbs 17230  Hom chom 17285   ×c cxpc 18184  swapFcswapf 49010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-swapf 49011
This theorem is referenced by:  swapfelvv  49014  swapf2fvala  49015  swapf1vala  49017
  Copyright terms: Public domain W3C validator