| Step | Hyp | Ref
| Expression |
| 1 | | df-swapf 48939 |
. . 3
⊢
swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c
𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → swapF =
(𝑐 ∈ V, 𝑑 ∈ V ↦
⦋(𝑐
×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉)) |
| 3 | | ovexd 7464 |
. . 3
⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (𝑐 ×c 𝑑) ∈ V) |
| 4 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑐 = 𝐶) |
| 5 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → 𝑑 = 𝐷) |
| 6 | 4, 5 | oveq12d 7447 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷)) |
| 7 | | swapfval.s |
. . . 4
⊢ 𝑆 = (𝐶 ×c 𝐷) |
| 8 | 6, 7 | eqtr4di 2794 |
. . 3
⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → (𝑐 ×c 𝑑) = 𝑆) |
| 9 | | fvexd 6919 |
. . . 4
⊢ (((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) ∈ V) |
| 10 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
| 11 | 10 | fveq2d 6908 |
. . . . 5
⊢ (((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) = (Base‘𝑆)) |
| 12 | | swapfval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
| 13 | 11, 12 | eqtr4di 2794 |
. . . 4
⊢ (((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → (Base‘𝑠) = 𝐵) |
| 14 | | fvexd 6919 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) ∈ V) |
| 15 | | simplr 769 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → 𝑠 = 𝑆) |
| 16 | 15 | fveq2d 6908 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) = (Hom ‘𝑆)) |
| 17 | | swapfval.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) |
| 18 | 17 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → 𝐻 = (Hom ‘𝑆)) |
| 19 | 16, 18 | eqtr4d 2779 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → (Hom ‘𝑠) = 𝐻) |
| 20 | | simplr 769 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → 𝑏 = 𝐵) |
| 21 | 20 | mpteq1d 5235 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥})) |
| 22 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → ℎ = 𝐻) |
| 23 | 22 | oveqd 7446 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (𝑢ℎ𝑣) = (𝑢𝐻𝑣)) |
| 24 | 23 | mpteq1d 5235 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}) = (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓})) |
| 25 | 20, 20, 24 | mpoeq123dv 7506 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓})) = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))) |
| 26 | 21, 25 | opeq12d 4879 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → 〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = 〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 27 | 14, 19, 26 | csbied2 3935 |
. . . 4
⊢ ((((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) ∧ 𝑏 = 𝐵) → ⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = 〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 28 | 9, 13, 27 | csbied2 3935 |
. . 3
⊢ (((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑠) / 𝑏⦌⦋(Hom
‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = 〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 29 | 3, 8, 28 | csbied2 3935 |
. 2
⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑑 = 𝐷)) → ⦋(𝑐 ×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = 〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 30 | | swapfval.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| 31 | 30 | elexd 3503 |
. 2
⊢ (𝜑 → 𝐶 ∈ V) |
| 32 | | swapfval.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 33 | 32 | elexd 3503 |
. 2
⊢ (𝜑 → 𝐷 ∈ V) |
| 34 | | opex 5467 |
. . 3
⊢
〈(𝑥 ∈
𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉 ∈ V |
| 35 | 34 | a1i 11 |
. 2
⊢ (𝜑 → 〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉 ∈ V) |
| 36 | 2, 29, 31, 33, 35 | ovmpod 7582 |
1
⊢ (𝜑 → (𝐶swapF𝐷) = 〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉) |