| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| swapf1.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| swapf1.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| swapf2.z | ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| swapf2.w | ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) |
| swapf2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑍)) |
| swapf2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑊)) |
| Ref | Expression |
|---|---|
| swapf2 | ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)𝐺) = 〈𝐺, 𝐹〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7358 | . 2 ⊢ (𝐹(〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)𝐺) = ((〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)‘〈𝐹, 𝐺〉) | |
| 2 | swapf1.o | . . . 4 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 3 | swapf1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 4 | swapf1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) | |
| 5 | swapf2.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) | |
| 6 | swapf2.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) | |
| 7 | eqid 2733 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 8 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | swapf2val 49434 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉) = (𝑓 ∈ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑍, 𝑊〉) ↦ ∪ ◡{𝑓})) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → 𝑓 = 〈𝐹, 𝐺〉) | |
| 11 | 10 | sneqd 4589 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → {𝑓} = {〈𝐹, 𝐺〉}) |
| 12 | 11 | cnveqd 5821 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → ◡{𝑓} = ◡{〈𝐹, 𝐺〉}) |
| 13 | 12 | unieqd 4873 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → ∪ ◡{𝑓} = ∪ ◡{〈𝐹, 𝐺〉}) |
| 14 | opswap 6184 | . . . 4 ⊢ ∪ ◡{〈𝐹, 𝐺〉} = 〈𝐺, 𝐹〉 | |
| 15 | 13, 14 | eqtrdi 2784 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → ∪ ◡{𝑓} = 〈𝐺, 𝐹〉) |
| 16 | swapf2.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑍)) | |
| 17 | swapf2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑊)) | |
| 18 | 16, 17 | opelxpd 5660 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊))) |
| 19 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 20 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 21 | eqid 2733 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 22 | eqid 2733 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 23 | eqid 2733 | . . . . 5 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
| 24 | 7, 19, 20, 21, 22, 3, 4, 5, 6, 23 | xpchom2 18100 | . . . 4 ⊢ (𝜑 → (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑍, 𝑊〉) = ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊))) |
| 25 | 18, 24 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑍, 𝑊〉)) |
| 26 | opex 5409 | . . . 4 ⊢ 〈𝐺, 𝐹〉 ∈ V | |
| 27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐺, 𝐹〉 ∈ V) |
| 28 | 9, 15, 25, 27 | fvmptd 6945 | . 2 ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)‘〈𝐹, 𝐺〉) = 〈𝐺, 𝐹〉) |
| 29 | 1, 28 | eqtrid 2780 | 1 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)𝐺) = 〈𝐺, 𝐹〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 〈cop 4583 ∪ cuni 4860 × cxp 5619 ◡ccnv 5620 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Hom chom 17179 ×c cxpc 18082 swapF cswapf 49420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-hom 17192 df-cco 17193 df-xpc 18086 df-swapf 49421 |
| This theorem is referenced by: swapfid 49440 cofuswapf2 49456 |
| Copyright terms: Public domain | W3C validator |