| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
| swapf1.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| swapf1.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| swapf2.z | ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| swapf2.w | ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) |
| swapf2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑍)) |
| swapf2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑊)) |
| Ref | Expression |
|---|---|
| swapf2 | ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)𝐺) = 〈𝐺, 𝐹〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7432 | . 2 ⊢ (𝐹(〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)𝐺) = ((〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)‘〈𝐹, 𝐺〉) | |
| 2 | swapf1.o | . . . 4 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
| 3 | swapf1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 4 | swapf1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) | |
| 5 | swapf2.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) | |
| 6 | swapf2.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) | |
| 7 | eqid 2736 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 8 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | swapf2val 48952 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉) = (𝑓 ∈ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑍, 𝑊〉) ↦ ∪ ◡{𝑓})) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → 𝑓 = 〈𝐹, 𝐺〉) | |
| 11 | 10 | sneqd 4636 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → {𝑓} = {〈𝐹, 𝐺〉}) |
| 12 | 11 | cnveqd 5884 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → ◡{𝑓} = ◡{〈𝐹, 𝐺〉}) |
| 13 | 12 | unieqd 4918 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → ∪ ◡{𝑓} = ∪ ◡{〈𝐹, 𝐺〉}) |
| 14 | opswap 6247 | . . . 4 ⊢ ∪ ◡{〈𝐹, 𝐺〉} = 〈𝐺, 𝐹〉 | |
| 15 | 13, 14 | eqtrdi 2792 | . . 3 ⊢ ((𝜑 ∧ 𝑓 = 〈𝐹, 𝐺〉) → ∪ ◡{𝑓} = 〈𝐺, 𝐹〉) |
| 16 | swapf2.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑍)) | |
| 17 | swapf2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑌(Hom ‘𝐷)𝑊)) | |
| 18 | 16, 17 | opelxpd 5722 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊))) |
| 19 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 20 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 21 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 22 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 23 | eqid 2736 | . . . . 5 ⊢ (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) | |
| 24 | 7, 19, 20, 21, 22, 3, 4, 5, 6, 23 | xpchom2 18227 | . . . 4 ⊢ (𝜑 → (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑍, 𝑊〉) = ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊))) |
| 25 | 18, 24 | eleqtrrd 2843 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (〈𝑋, 𝑌〉(Hom ‘(𝐶 ×c 𝐷))〈𝑍, 𝑊〉)) |
| 26 | opex 5467 | . . . 4 ⊢ 〈𝐺, 𝐹〉 ∈ V | |
| 27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐺, 𝐹〉 ∈ V) |
| 28 | 9, 15, 25, 27 | fvmptd 7021 | . 2 ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)‘〈𝐹, 𝐺〉) = 〈𝐺, 𝐹〉) |
| 29 | 1, 28 | eqtrid 2788 | 1 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉)𝐺) = 〈𝐺, 𝐹〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3479 {csn 4624 〈cop 4630 ∪ cuni 4905 × cxp 5681 ◡ccnv 5682 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Hom chom 17304 ×c cxpc 18209 swapFcswapf 48938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17244 df-hom 17317 df-cco 17318 df-xpc 18213 df-swapf 48939 |
| This theorem is referenced by: swapfid 48958 cofuswapf2 48968 |
| Copyright terms: Public domain | W3C validator |