Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2 Structured version   Visualization version   GIF version

Theorem swapf2 49025
Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapf1.o (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
swapf1.x (𝜑𝑋 ∈ (Base‘𝐶))
swapf1.y (𝜑𝑌 ∈ (Base‘𝐷))
swapf2.z (𝜑𝑍 ∈ (Base‘𝐶))
swapf2.w (𝜑𝑊 ∈ (Base‘𝐷))
swapf2.f (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑍))
swapf2.g (𝜑𝐺 ∈ (𝑌(Hom ‘𝐷)𝑊))
Assertion
Ref Expression
swapf2 (𝜑 → (𝐹(⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩)𝐺) = ⟨𝐺, 𝐹⟩)

Proof of Theorem swapf2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7416 . 2 (𝐹(⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩)𝐺) = ((⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩)‘⟨𝐹, 𝐺⟩)
2 swapf1.o . . . 4 (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
3 swapf1.x . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
4 swapf1.y . . . 4 (𝜑𝑌 ∈ (Base‘𝐷))
5 swapf2.z . . . 4 (𝜑𝑍 ∈ (Base‘𝐶))
6 swapf2.w . . . 4 (𝜑𝑊 ∈ (Base‘𝐷))
7 eqid 2734 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
8 eqidd 2735 . . . 4 (𝜑 → (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)))
92, 3, 4, 5, 6, 7, 8swapf2val 49024 . . 3 (𝜑 → (⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩) = (𝑓 ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩) ↦ {𝑓}))
10 simpr 484 . . . . . . 7 ((𝜑𝑓 = ⟨𝐹, 𝐺⟩) → 𝑓 = ⟨𝐹, 𝐺⟩)
1110sneqd 4618 . . . . . 6 ((𝜑𝑓 = ⟨𝐹, 𝐺⟩) → {𝑓} = {⟨𝐹, 𝐺⟩})
1211cnveqd 5866 . . . . 5 ((𝜑𝑓 = ⟨𝐹, 𝐺⟩) → {𝑓} = {⟨𝐹, 𝐺⟩})
1312unieqd 4900 . . . 4 ((𝜑𝑓 = ⟨𝐹, 𝐺⟩) → {𝑓} = {⟨𝐹, 𝐺⟩})
14 opswap 6229 . . . 4 {⟨𝐹, 𝐺⟩} = ⟨𝐺, 𝐹
1513, 14eqtrdi 2785 . . 3 ((𝜑𝑓 = ⟨𝐹, 𝐺⟩) → {𝑓} = ⟨𝐺, 𝐹⟩)
16 swapf2.f . . . . 5 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑍))
17 swapf2.g . . . . 5 (𝜑𝐺 ∈ (𝑌(Hom ‘𝐷)𝑊))
1816, 17opelxpd 5704 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)))
19 eqid 2734 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
20 eqid 2734 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
21 eqid 2734 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
22 eqid 2734 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
23 eqid 2734 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
247, 19, 20, 21, 22, 3, 4, 5, 6, 23xpchom2 18202 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩) = ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)))
2518, 24eleqtrrd 2836 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))
26 opex 5449 . . . 4 𝐺, 𝐹⟩ ∈ V
2726a1i 11 . . 3 (𝜑 → ⟨𝐺, 𝐹⟩ ∈ V)
289, 15, 25, 27fvmptd 7003 . 2 (𝜑 → ((⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩)‘⟨𝐹, 𝐺⟩) = ⟨𝐺, 𝐹⟩)
291, 28eqtrid 2781 1 (𝜑 → (𝐹(⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩)𝐺) = ⟨𝐺, 𝐹⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606  cop 4612   cuni 4887   × cxp 5663  ccnv 5664  cfv 6541  (class class class)co 7413  Basecbs 17230  Hom chom 17285   ×c cxpc 18184  swapFcswapf 49010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-xpc 18188  df-swapf 49011
This theorem is referenced by:  swapfid  49030  cofuswapf2  49040
  Copyright terms: Public domain W3C validator