| Step | Hyp | Ref
| Expression |
| 1 | | df-swapf 49011 |
. 2
⊢
swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c
𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 2 | | fvex 6899 |
. . . . . 6
⊢
(Base‘(𝑐
×c 𝑑)) ∈ V |
| 3 | | id 22 |
. . . . . . . . . 10
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → 𝑏 = (Base‘(𝑐 ×c
𝑑))) |
| 4 | | eqid 2734 |
. . . . . . . . . . 11
⊢ (𝑐 ×c
𝑑) = (𝑐 ×c 𝑑) |
| 5 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(Base‘𝑐) =
(Base‘𝑐) |
| 6 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(Base‘𝑑) =
(Base‘𝑑) |
| 7 | 4, 5, 6 | xpcbas 18194 |
. . . . . . . . . 10
⊢
((Base‘𝑐)
× (Base‘𝑑)) =
(Base‘(𝑐
×c 𝑑)) |
| 8 | 3, 7 | eqtr4di 2787 |
. . . . . . . . 9
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → 𝑏 = ((Base‘𝑐) × (Base‘𝑑))) |
| 9 | 8 | mpteq1d 5217 |
. . . . . . . 8
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → (𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥})) |
| 10 | | eqidd 2735 |
. . . . . . . . 9
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}) = (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓})) |
| 11 | 8, 8, 10 | mpoeq123dv 7490 |
. . . . . . . 8
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))) |
| 12 | 9, 11 | opeq12d 4861 |
. . . . . . 7
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → 〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = 〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 13 | 12 | csbeq2dv 3886 |
. . . . . 6
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) →
⦋(Hom ‘(𝑐 ×c 𝑑)) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = ⦋(Hom ‘(𝑐 ×c
𝑑)) / ℎ⦌〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 14 | 2, 13 | csbie 3914 |
. . . . 5
⊢
⦋(Base‘(𝑐 ×c 𝑑)) / 𝑏⦌⦋(Hom
‘(𝑐
×c 𝑑)) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = ⦋(Hom ‘(𝑐 ×c
𝑑)) / ℎ⦌〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 15 | | ovex 7446 |
. . . . . 6
⊢ (𝑐 ×c
𝑑) ∈
V |
| 16 | | fveq2 6886 |
. . . . . . 7
⊢ (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) = (Base‘(𝑐 ×c
𝑑))) |
| 17 | | fveq2 6886 |
. . . . . . . 8
⊢ (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) = (Hom ‘(𝑐 ×c
𝑑))) |
| 18 | 17 | csbeq1d 3883 |
. . . . . . 7
⊢ (𝑠 = (𝑐 ×c 𝑑) → ⦋(Hom
‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = ⦋(Hom ‘(𝑐 ×c
𝑑)) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 19 | 16, 18 | csbeq12dv 3888 |
. . . . . 6
⊢ (𝑠 = (𝑐 ×c 𝑑) →
⦋(Base‘𝑠) / 𝑏⦌⦋(Hom
‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = ⦋(Base‘(𝑐 ×c
𝑑)) / 𝑏⦌⦋(Hom
‘(𝑐
×c 𝑑)) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 20 | 15, 19 | csbie 3914 |
. . . . 5
⊢
⦋(𝑐
×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = ⦋(Base‘(𝑐 ×c 𝑑)) / 𝑏⦌⦋(Hom
‘(𝑐
×c 𝑑)) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 21 | 17 | csbeq1d 3883 |
. . . . . . . 8
⊢ (𝑠 = (𝑐 ×c 𝑑) → ⦋(Hom
‘𝑠) / ℎ⦌〈(tpos I
↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = ⦋(Hom ‘(𝑐 ×c
𝑑)) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉) |
| 22 | 16, 21 | csbeq12dv 3888 |
. . . . . . 7
⊢ (𝑠 = (𝑐 ×c 𝑑) →
⦋(Base‘𝑠) / 𝑏⦌⦋(Hom
‘𝑠) / ℎ⦌〈(tpos I
↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = ⦋(Base‘(𝑐 ×c
𝑑)) / 𝑏⦌⦋(Hom
‘(𝑐
×c 𝑑)) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉) |
| 23 | 15, 22 | csbie 3914 |
. . . . . 6
⊢
⦋(𝑐
×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = ⦋(Base‘(𝑐 ×c 𝑑)) / 𝑏⦌⦋(Hom
‘(𝑐
×c 𝑑)) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 |
| 24 | 8 | reseq2d 5977 |
. . . . . . . . 9
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → (tpos I ↾
𝑏) = (tpos I ↾
((Base‘𝑐) ×
(Base‘𝑑)))) |
| 25 | | eqidd 2735 |
. . . . . . . . . 10
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → (tpos I ↾
(𝑢ℎ𝑣)) = (tpos I ↾ (𝑢ℎ𝑣))) |
| 26 | 8, 8, 25 | mpoeq123dv 7490 |
. . . . . . . . 9
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢ℎ𝑣)))) |
| 27 | 24, 26 | opeq12d 4861 |
. . . . . . . 8
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) → 〈(tpos I
↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = 〈(tpos I ↾
((Base‘𝑐) ×
(Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉) |
| 28 | 27 | csbeq2dv 3886 |
. . . . . . 7
⊢ (𝑏 = (Base‘(𝑐 ×c
𝑑)) →
⦋(Hom ‘(𝑐 ×c 𝑑)) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = ⦋(Hom ‘(𝑐 ×c
𝑑)) / ℎ⦌〈(tpos I ↾
((Base‘𝑐) ×
(Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉) |
| 29 | 2, 28 | csbie 3914 |
. . . . . 6
⊢
⦋(Base‘(𝑐 ×c 𝑑)) / 𝑏⦌⦋(Hom
‘(𝑐
×c 𝑑)) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = ⦋(Hom ‘(𝑐 ×c
𝑑)) / ℎ⦌〈(tpos I ↾
((Base‘𝑐) ×
(Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 |
| 30 | | eqid 2734 |
. . . . . . . . 9
⊢
((Base‘𝑐)
× (Base‘𝑑)) =
((Base‘𝑐) ×
(Base‘𝑑)) |
| 31 | 30 | tposideq2 48772 |
. . . . . . . 8
⊢ (tpos I
↾ ((Base‘𝑐)
× (Base‘𝑑))) =
(𝑥 ∈
((Base‘𝑐) ×
(Base‘𝑑)) ↦
∪ ◡{𝑥}) |
| 32 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(((1st ‘𝑢)(Hom ‘𝑐)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑑)(2nd ‘𝑣))) = (((1st ‘𝑢)(Hom ‘𝑐)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑑)(2nd ‘𝑣))) |
| 33 | 32 | tposideq2 48772 |
. . . . . . . . . 10
⊢ (tpos I
↾ (((1st ‘𝑢)(Hom ‘𝑐)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑑)(2nd ‘𝑣)))) = (𝑓 ∈ (((1st ‘𝑢)(Hom ‘𝑐)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑑)(2nd ‘𝑣))) ↦ ∪
◡{𝑓}) |
| 34 | | eqid 2734 |
. . . . . . . . . . . 12
⊢ (Hom
‘𝑐) = (Hom
‘𝑐) |
| 35 | | eqid 2734 |
. . . . . . . . . . . 12
⊢ (Hom
‘𝑑) = (Hom
‘𝑑) |
| 36 | | eqid 2734 |
. . . . . . . . . . . 12
⊢ (Hom
‘(𝑐
×c 𝑑)) = (Hom ‘(𝑐 ×c 𝑑)) |
| 37 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑))) |
| 38 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) |
| 39 | 4, 7, 34, 35, 36, 37, 38 | xpchom 18196 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) = (((1st ‘𝑢)(Hom ‘𝑐)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑑)(2nd ‘𝑣)))) |
| 40 | 39 | reseq2d 5977 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (tpos I ↾ (((1st
‘𝑢)(Hom ‘𝑐)(1st ‘𝑣)) × ((2nd
‘𝑢)(Hom ‘𝑑)(2nd ‘𝑣))))) |
| 41 | 39 | mpteq1d 5217 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ ∪ ◡{𝑓}) = (𝑓 ∈ (((1st ‘𝑢)(Hom ‘𝑐)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑑)(2nd ‘𝑣))) ↦ ∪
◡{𝑓})) |
| 42 | 33, 40, 41 | 3eqtr4a 2795 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ ∪ ◡{𝑓})) |
| 43 | 42 | mpoeq3ia 7493 |
. . . . . . . 8
⊢ (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ ∪ ◡{𝑓})) |
| 44 | 31, 43 | opeq12i 4858 |
. . . . . . 7
⊢
〈(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))〉 = 〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 45 | | fvex 6899 |
. . . . . . . 8
⊢ (Hom
‘(𝑐
×c 𝑑)) ∈ V |
| 46 | | oveq 7419 |
. . . . . . . . . . 11
⊢ (ℎ = (Hom ‘(𝑐 ×c
𝑑)) → (𝑢ℎ𝑣) = (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) |
| 47 | 46 | reseq2d 5977 |
. . . . . . . . . 10
⊢ (ℎ = (Hom ‘(𝑐 ×c
𝑑)) → (tpos I ↾
(𝑢ℎ𝑣)) = (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))) |
| 48 | 47 | mpoeq3dv 7494 |
. . . . . . . . 9
⊢ (ℎ = (Hom ‘(𝑐 ×c
𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢ℎ𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))) |
| 49 | 48 | opeq2d 4860 |
. . . . . . . 8
⊢ (ℎ = (Hom ‘(𝑐 ×c
𝑑)) → 〈(tpos I
↾ ((Base‘𝑐)
× (Base‘𝑑))),
(𝑢 ∈
((Base‘𝑐) ×
(Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾
(𝑢ℎ𝑣)))〉 = 〈(tpos I ↾
((Base‘𝑐) ×
(Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))〉) |
| 50 | 45, 49 | csbie 3914 |
. . . . . . 7
⊢
⦋(Hom ‘(𝑐 ×c 𝑑)) / ℎ⦌〈(tpos I ↾
((Base‘𝑐) ×
(Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = 〈(tpos I ↾
((Base‘𝑐) ×
(Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))〉 |
| 51 | 46 | mpteq1d 5217 |
. . . . . . . . . 10
⊢ (ℎ = (Hom ‘(𝑐 ×c
𝑑)) → (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ ∪ ◡{𝑓})) |
| 52 | 51 | mpoeq3dv 7494 |
. . . . . . . . 9
⊢ (ℎ = (Hom ‘(𝑐 ×c
𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ ∪ ◡{𝑓}))) |
| 53 | 52 | opeq2d 4860 |
. . . . . . . 8
⊢ (ℎ = (Hom ‘(𝑐 ×c
𝑑)) → 〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = 〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 54 | 45, 53 | csbie 3914 |
. . . . . . 7
⊢
⦋(Hom ‘(𝑐 ×c 𝑑)) / ℎ⦌〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 = 〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 55 | 44, 50, 54 | 3eqtr4i 2767 |
. . . . . 6
⊢
⦋(Hom ‘(𝑐 ×c 𝑑)) / ℎ⦌〈(tpos I ↾
((Base‘𝑐) ×
(Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = ⦋(Hom ‘(𝑐 ×c
𝑑)) / ℎ⦌〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 56 | 23, 29, 55 | 3eqtri 2761 |
. . . . 5
⊢
⦋(𝑐
×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = ⦋(Hom ‘(𝑐 ×c 𝑑)) / ℎ⦌〈(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 57 | 14, 20, 56 | 3eqtr4ri 2768 |
. . . 4
⊢
⦋(𝑐
×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = ⦋(𝑐 ×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉 |
| 58 | 57 | a1i 11 |
. . 3
⊢ ((𝑐 ∈ V ∧ 𝑑 ∈ V) →
⦋(𝑐
×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉 = ⦋(𝑐 ×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 59 | 58 | mpoeq3ia 7493 |
. 2
⊢ (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c
𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉) = (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c 𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(𝑥 ∈ 𝑏 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (𝑓 ∈ (𝑢ℎ𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 60 | 1, 59 | eqtr4i 2760 |
1
⊢
swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ ⦋(𝑐 ×c
𝑑) / 𝑠⦌⦋(Base‘𝑠) / 𝑏⦌⦋(Hom ‘𝑠) / ℎ⦌〈(tpos I ↾ 𝑏), (𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (tpos I ↾ (𝑢ℎ𝑣)))〉) |