Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfswapf2 Structured version   Visualization version   GIF version

Theorem dfswapf2 49293
Description: Alternate definition of swapF (df-swapf 49292). (Contributed by Zhi Wang, 9-Oct-2025.)
Assertion
Ref Expression
dfswapf2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Distinct variable group:   𝑏,𝑐,𝑑,,𝑠,𝑢,𝑣

Proof of Theorem dfswapf2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-swapf 49292 . 2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2 fvex 6830 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) ∈ V
3 id 22 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = (Base‘(𝑐 ×c 𝑑)))
4 eqid 2731 . . . . . . . . . . 11 (𝑐 ×c 𝑑) = (𝑐 ×c 𝑑)
5 eqid 2731 . . . . . . . . . . 11 (Base‘𝑐) = (Base‘𝑐)
6 eqid 2731 . . . . . . . . . . 11 (Base‘𝑑) = (Base‘𝑑)
74, 5, 6xpcbas 18079 . . . . . . . . . 10 ((Base‘𝑐) × (Base‘𝑑)) = (Base‘(𝑐 ×c 𝑑))
83, 7eqtr4di 2784 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = ((Base‘𝑐) × (Base‘𝑑)))
98mpteq1d 5176 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑥𝑏 {𝑥}) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}))
10 eqidd 2732 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))
118, 8, 10mpoeq123dv 7416 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})))
129, 11opeq12d 4828 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1312csbeq2dv 3852 . . . . . 6 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
142, 13csbie 3880 . . . . 5 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
15 ovex 7374 . . . . . 6 (𝑐 ×c 𝑑) ∈ V
16 fveq2 6817 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) = (Base‘(𝑐 ×c 𝑑)))
17 fveq2 6817 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) = (Hom ‘(𝑐 ×c 𝑑)))
1817csbeq1d 3849 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1916, 18csbeq12dv 3854 . . . . . 6 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2015, 19csbie 3880 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
2117csbeq1d 3849 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2216, 21csbeq12dv 3854 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2315, 22csbie 3880 . . . . . 6 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩
248reseq2d 5923 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ 𝑏) = (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))))
25 eqidd 2732 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢𝑣)))
268, 8, 25mpoeq123dv 7416 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))))
2724, 26opeq12d 4828 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2827csbeq2dv 3852 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
292, 28csbie 3880 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩
30 eqid 2731 . . . . . . . . 9 ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝑐) × (Base‘𝑑))
3130tposideq2 48920 . . . . . . . 8 (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥})
32 eqid 2731 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))
3332tposideq2 48920 . . . . . . . . . 10 (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓})
34 eqid 2731 . . . . . . . . . . . 12 (Hom ‘𝑐) = (Hom ‘𝑐)
35 eqid 2731 . . . . . . . . . . . 12 (Hom ‘𝑑) = (Hom ‘𝑑)
36 eqid 2731 . . . . . . . . . . . 12 (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘(𝑐 ×c 𝑑))
37 simpl 482 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)))
38 simpr 484 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)))
394, 7, 34, 35, 36, 37, 38xpchom 18081 . . . . . . . . . . 11 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))))
4039reseq2d 5923 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))))
4139mpteq1d 5176 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓}))
4233, 40, 413eqtr4a 2792 . . . . . . . . 9 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4342mpoeq3ia 7419 . . . . . . . 8 (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4431, 43opeq12i 4825 . . . . . . 7 ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
45 fvex 6830 . . . . . . . 8 (Hom ‘(𝑐 ×c 𝑑)) ∈ V
46 oveq 7347 . . . . . . . . . . 11 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢𝑣) = (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))
4746reseq2d 5923 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))
4847mpoeq3dv 7420 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))))
4948opeq2d 4827 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩)
5045, 49csbie 3880 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩
5146mpteq1d 5176 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
5251mpoeq3dv 7420 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓})))
5352opeq2d 4827 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩)
5445, 53csbie 3880 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
5544, 50, 543eqtr4i 2764 . . . . . 6 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5623, 29, 553eqtri 2758 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5714, 20, 563eqtr4ri 2765 . . . 4 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5857a1i 11 . . 3 ((𝑐 ∈ V ∧ 𝑑 ∈ V) → (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
5958mpoeq3ia 7419 . 2 (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩) = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
601, 59eqtr4i 2757 1 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  csb 3845  {csn 4571  cop 4577   cuni 4854  cmpt 5167   I cid 5505   × cxp 5609  ccnv 5610  cres 5613  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  tpos ctpos 8150  Basecbs 17115  Hom chom 17167   ×c cxpc 18069   swapF cswapf 49291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-xpc 18073  df-swapf 49292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator