Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfswapf2 Structured version   Visualization version   GIF version

Theorem dfswapf2 48940
Description: Alternate definition of swapF (df-swapf 48939). (Contributed by Zhi Wang, 9-Oct-2025.)
Assertion
Ref Expression
dfswapf2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Distinct variable group:   𝑏,𝑐,𝑑,,𝑠,𝑢,𝑣

Proof of Theorem dfswapf2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-swapf 48939 . 2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2 fvex 6917 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) ∈ V
3 id 22 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = (Base‘(𝑐 ×c 𝑑)))
4 eqid 2736 . . . . . . . . . . 11 (𝑐 ×c 𝑑) = (𝑐 ×c 𝑑)
5 eqid 2736 . . . . . . . . . . 11 (Base‘𝑐) = (Base‘𝑐)
6 eqid 2736 . . . . . . . . . . 11 (Base‘𝑑) = (Base‘𝑑)
74, 5, 6xpcbas 18219 . . . . . . . . . 10 ((Base‘𝑐) × (Base‘𝑑)) = (Base‘(𝑐 ×c 𝑑))
83, 7eqtr4di 2794 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = ((Base‘𝑐) × (Base‘𝑑)))
98mpteq1d 5235 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑥𝑏 {𝑥}) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}))
10 eqidd 2737 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))
118, 8, 10mpoeq123dv 7506 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})))
129, 11opeq12d 4879 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1312csbeq2dv 3905 . . . . . 6 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
142, 13csbie 3933 . . . . 5 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
15 ovex 7462 . . . . . 6 (𝑐 ×c 𝑑) ∈ V
16 fveq2 6904 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) = (Base‘(𝑐 ×c 𝑑)))
17 fveq2 6904 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) = (Hom ‘(𝑐 ×c 𝑑)))
1817csbeq1d 3902 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1916, 18csbeq12dv 3907 . . . . . 6 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2015, 19csbie 3933 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
2117csbeq1d 3902 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2216, 21csbeq12dv 3907 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2315, 22csbie 3933 . . . . . 6 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩
248reseq2d 5995 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ 𝑏) = (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))))
25 eqidd 2737 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢𝑣)))
268, 8, 25mpoeq123dv 7506 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))))
2724, 26opeq12d 4879 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2827csbeq2dv 3905 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
292, 28csbie 3933 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩
30 eqid 2736 . . . . . . . . 9 ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝑐) × (Base‘𝑑))
3130tposideq2 48762 . . . . . . . 8 (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥})
32 eqid 2736 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))
3332tposideq2 48762 . . . . . . . . . 10 (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓})
34 eqid 2736 . . . . . . . . . . . 12 (Hom ‘𝑐) = (Hom ‘𝑐)
35 eqid 2736 . . . . . . . . . . . 12 (Hom ‘𝑑) = (Hom ‘𝑑)
36 eqid 2736 . . . . . . . . . . . 12 (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘(𝑐 ×c 𝑑))
37 simpl 482 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)))
38 simpr 484 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)))
394, 7, 34, 35, 36, 37, 38xpchom 18221 . . . . . . . . . . 11 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))))
4039reseq2d 5995 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))))
4139mpteq1d 5235 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓}))
4233, 40, 413eqtr4a 2802 . . . . . . . . 9 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4342mpoeq3ia 7509 . . . . . . . 8 (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4431, 43opeq12i 4876 . . . . . . 7 ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
45 fvex 6917 . . . . . . . 8 (Hom ‘(𝑐 ×c 𝑑)) ∈ V
46 oveq 7435 . . . . . . . . . . 11 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢𝑣) = (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))
4746reseq2d 5995 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))
4847mpoeq3dv 7510 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))))
4948opeq2d 4878 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩)
5045, 49csbie 3933 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩
5146mpteq1d 5235 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
5251mpoeq3dv 7510 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓})))
5352opeq2d 4878 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩)
5445, 53csbie 3933 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
5544, 50, 543eqtr4i 2774 . . . . . 6 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5623, 29, 553eqtri 2768 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5714, 20, 563eqtr4ri 2775 . . . 4 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5857a1i 11 . . 3 ((𝑐 ∈ V ∧ 𝑑 ∈ V) → (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
5958mpoeq3ia 7509 . 2 (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩) = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
601, 59eqtr4i 2767 1 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  Vcvv 3479  csb 3898  {csn 4624  cop 4630   cuni 4905  cmpt 5223   I cid 5575   × cxp 5681  ccnv 5682  cres 5685  cfv 6559  (class class class)co 7429  cmpo 7431  1st c1st 8008  2nd c2nd 8009  tpos ctpos 8246  Basecbs 17243  Hom chom 17304   ×c cxpc 18209  swapFcswapf 48938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-tpos 8247  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-hom 17317  df-cco 17318  df-xpc 18213  df-swapf 48939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator