Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfswapf2 Structured version   Visualization version   GIF version

Theorem dfswapf2 49223
Description: Alternate definition of swapF (df-swapf 49222). (Contributed by Zhi Wang, 9-Oct-2025.)
Assertion
Ref Expression
dfswapf2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Distinct variable group:   𝑏,𝑐,𝑑,,𝑠,𝑢,𝑣

Proof of Theorem dfswapf2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-swapf 49222 . 2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2 fvex 6853 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) ∈ V
3 id 22 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = (Base‘(𝑐 ×c 𝑑)))
4 eqid 2729 . . . . . . . . . . 11 (𝑐 ×c 𝑑) = (𝑐 ×c 𝑑)
5 eqid 2729 . . . . . . . . . . 11 (Base‘𝑐) = (Base‘𝑐)
6 eqid 2729 . . . . . . . . . . 11 (Base‘𝑑) = (Base‘𝑑)
74, 5, 6xpcbas 18115 . . . . . . . . . 10 ((Base‘𝑐) × (Base‘𝑑)) = (Base‘(𝑐 ×c 𝑑))
83, 7eqtr4di 2782 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = ((Base‘𝑐) × (Base‘𝑑)))
98mpteq1d 5192 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑥𝑏 {𝑥}) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}))
10 eqidd 2730 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))
118, 8, 10mpoeq123dv 7444 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})))
129, 11opeq12d 4841 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1312csbeq2dv 3866 . . . . . 6 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
142, 13csbie 3894 . . . . 5 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
15 ovex 7402 . . . . . 6 (𝑐 ×c 𝑑) ∈ V
16 fveq2 6840 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) = (Base‘(𝑐 ×c 𝑑)))
17 fveq2 6840 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) = (Hom ‘(𝑐 ×c 𝑑)))
1817csbeq1d 3863 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1916, 18csbeq12dv 3868 . . . . . 6 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2015, 19csbie 3894 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
2117csbeq1d 3863 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2216, 21csbeq12dv 3868 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2315, 22csbie 3894 . . . . . 6 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩
248reseq2d 5939 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ 𝑏) = (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))))
25 eqidd 2730 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢𝑣)))
268, 8, 25mpoeq123dv 7444 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))))
2724, 26opeq12d 4841 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2827csbeq2dv 3866 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
292, 28csbie 3894 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩
30 eqid 2729 . . . . . . . . 9 ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝑐) × (Base‘𝑑))
3130tposideq2 48850 . . . . . . . 8 (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥})
32 eqid 2729 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))
3332tposideq2 48850 . . . . . . . . . 10 (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓})
34 eqid 2729 . . . . . . . . . . . 12 (Hom ‘𝑐) = (Hom ‘𝑐)
35 eqid 2729 . . . . . . . . . . . 12 (Hom ‘𝑑) = (Hom ‘𝑑)
36 eqid 2729 . . . . . . . . . . . 12 (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘(𝑐 ×c 𝑑))
37 simpl 482 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)))
38 simpr 484 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)))
394, 7, 34, 35, 36, 37, 38xpchom 18117 . . . . . . . . . . 11 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))))
4039reseq2d 5939 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))))
4139mpteq1d 5192 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓}))
4233, 40, 413eqtr4a 2790 . . . . . . . . 9 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4342mpoeq3ia 7447 . . . . . . . 8 (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4431, 43opeq12i 4838 . . . . . . 7 ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
45 fvex 6853 . . . . . . . 8 (Hom ‘(𝑐 ×c 𝑑)) ∈ V
46 oveq 7375 . . . . . . . . . . 11 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢𝑣) = (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))
4746reseq2d 5939 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))
4847mpoeq3dv 7448 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))))
4948opeq2d 4840 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩)
5045, 49csbie 3894 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩
5146mpteq1d 5192 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
5251mpoeq3dv 7448 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓})))
5352opeq2d 4840 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩)
5445, 53csbie 3894 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
5544, 50, 543eqtr4i 2762 . . . . . 6 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5623, 29, 553eqtri 2756 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5714, 20, 563eqtr4ri 2763 . . . 4 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5857a1i 11 . . 3 ((𝑐 ∈ V ∧ 𝑑 ∈ V) → (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
5958mpoeq3ia 7447 . 2 (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩) = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
601, 59eqtr4i 2755 1 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  csb 3859  {csn 4585  cop 4591   cuni 4867  cmpt 5183   I cid 5525   × cxp 5629  ccnv 5630  cres 5633  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181  Basecbs 17155  Hom chom 17207   ×c cxpc 18105   swapF cswapf 49221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-xpc 18109  df-swapf 49222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator