Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfswapf2 Structured version   Visualization version   GIF version

Theorem dfswapf2 49422
Description: Alternate definition of swapF (df-swapf 49421). (Contributed by Zhi Wang, 9-Oct-2025.)
Assertion
Ref Expression
dfswapf2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Distinct variable group:   𝑏,𝑐,𝑑,,𝑠,𝑢,𝑣

Proof of Theorem dfswapf2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-swapf 49421 . 2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2 fvex 6844 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) ∈ V
3 id 22 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = (Base‘(𝑐 ×c 𝑑)))
4 eqid 2733 . . . . . . . . . . 11 (𝑐 ×c 𝑑) = (𝑐 ×c 𝑑)
5 eqid 2733 . . . . . . . . . . 11 (Base‘𝑐) = (Base‘𝑐)
6 eqid 2733 . . . . . . . . . . 11 (Base‘𝑑) = (Base‘𝑑)
74, 5, 6xpcbas 18092 . . . . . . . . . 10 ((Base‘𝑐) × (Base‘𝑑)) = (Base‘(𝑐 ×c 𝑑))
83, 7eqtr4di 2786 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = ((Base‘𝑐) × (Base‘𝑑)))
98mpteq1d 5185 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑥𝑏 {𝑥}) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}))
10 eqidd 2734 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))
118, 8, 10mpoeq123dv 7430 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})))
129, 11opeq12d 4834 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1312csbeq2dv 3853 . . . . . 6 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
142, 13csbie 3881 . . . . 5 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
15 ovex 7388 . . . . . 6 (𝑐 ×c 𝑑) ∈ V
16 fveq2 6831 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) = (Base‘(𝑐 ×c 𝑑)))
17 fveq2 6831 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) = (Hom ‘(𝑐 ×c 𝑑)))
1817csbeq1d 3850 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1916, 18csbeq12dv 3855 . . . . . 6 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2015, 19csbie 3881 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
2117csbeq1d 3850 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2216, 21csbeq12dv 3855 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2315, 22csbie 3881 . . . . . 6 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩
248reseq2d 5935 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ 𝑏) = (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))))
25 eqidd 2734 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢𝑣)))
268, 8, 25mpoeq123dv 7430 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))))
2724, 26opeq12d 4834 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2827csbeq2dv 3853 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
292, 28csbie 3881 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩
30 eqid 2733 . . . . . . . . 9 ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝑐) × (Base‘𝑑))
3130tposideq2 49050 . . . . . . . 8 (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥})
32 eqid 2733 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))
3332tposideq2 49050 . . . . . . . . . 10 (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓})
34 eqid 2733 . . . . . . . . . . . 12 (Hom ‘𝑐) = (Hom ‘𝑐)
35 eqid 2733 . . . . . . . . . . . 12 (Hom ‘𝑑) = (Hom ‘𝑑)
36 eqid 2733 . . . . . . . . . . . 12 (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘(𝑐 ×c 𝑑))
37 simpl 482 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)))
38 simpr 484 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)))
394, 7, 34, 35, 36, 37, 38xpchom 18094 . . . . . . . . . . 11 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))))
4039reseq2d 5935 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))))
4139mpteq1d 5185 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓}))
4233, 40, 413eqtr4a 2794 . . . . . . . . 9 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4342mpoeq3ia 7433 . . . . . . . 8 (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4431, 43opeq12i 4831 . . . . . . 7 ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
45 fvex 6844 . . . . . . . 8 (Hom ‘(𝑐 ×c 𝑑)) ∈ V
46 oveq 7361 . . . . . . . . . . 11 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢𝑣) = (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))
4746reseq2d 5935 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))
4847mpoeq3dv 7434 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))))
4948opeq2d 4833 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩)
5045, 49csbie 3881 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩
5146mpteq1d 5185 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
5251mpoeq3dv 7434 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓})))
5352opeq2d 4833 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩)
5445, 53csbie 3881 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
5544, 50, 543eqtr4i 2766 . . . . . 6 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5623, 29, 553eqtri 2760 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5714, 20, 563eqtr4ri 2767 . . . 4 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5857a1i 11 . . 3 ((𝑐 ∈ V ∧ 𝑑 ∈ V) → (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
5958mpoeq3ia 7433 . 2 (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩) = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
601, 59eqtr4i 2759 1 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  csb 3846  {csn 4577  cop 4583   cuni 4860  cmpt 5176   I cid 5515   × cxp 5619  ccnv 5620  cres 5623  cfv 6489  (class class class)co 7355  cmpo 7357  1st c1st 7928  2nd c2nd 7929  tpos ctpos 8164  Basecbs 17127  Hom chom 17179   ×c cxpc 18082   swapF cswapf 49420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-xpc 18086  df-swapf 49421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator