Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfswapf2 Structured version   Visualization version   GIF version

Theorem dfswapf2 49266
Description: Alternate definition of swapF (df-swapf 49265). (Contributed by Zhi Wang, 9-Oct-2025.)
Assertion
Ref Expression
dfswapf2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Distinct variable group:   𝑏,𝑐,𝑑,,𝑠,𝑢,𝑣

Proof of Theorem dfswapf2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-swapf 49265 . 2 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2 fvex 6839 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) ∈ V
3 id 22 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = (Base‘(𝑐 ×c 𝑑)))
4 eqid 2729 . . . . . . . . . . 11 (𝑐 ×c 𝑑) = (𝑐 ×c 𝑑)
5 eqid 2729 . . . . . . . . . . 11 (Base‘𝑐) = (Base‘𝑐)
6 eqid 2729 . . . . . . . . . . 11 (Base‘𝑑) = (Base‘𝑑)
74, 5, 6xpcbas 18103 . . . . . . . . . 10 ((Base‘𝑐) × (Base‘𝑑)) = (Base‘(𝑐 ×c 𝑑))
83, 7eqtr4di 2782 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → 𝑏 = ((Base‘𝑐) × (Base‘𝑑)))
98mpteq1d 5185 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑥𝑏 {𝑥}) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}))
10 eqidd 2730 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))
118, 8, 10mpoeq123dv 7428 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})))
129, 11opeq12d 4835 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1312csbeq2dv 3860 . . . . . 6 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
142, 13csbie 3888 . . . . 5 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
15 ovex 7386 . . . . . 6 (𝑐 ×c 𝑑) ∈ V
16 fveq2 6826 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) = (Base‘(𝑐 ×c 𝑑)))
17 fveq2 6826 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) = (Hom ‘(𝑐 ×c 𝑑)))
1817csbeq1d 3857 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
1916, 18csbeq12dv 3862 . . . . . 6 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
2015, 19csbie 3888 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
2117csbeq1d 3857 . . . . . . . 8 (𝑠 = (𝑐 ×c 𝑑) → (Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2216, 21csbeq12dv 3862 . . . . . . 7 (𝑠 = (𝑐 ×c 𝑑) → (Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2315, 22csbie 3888 . . . . . 6 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩
248reseq2d 5934 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ 𝑏) = (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))))
25 eqidd 2730 . . . . . . . . . 10 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢𝑣)))
268, 8, 25mpoeq123dv 7428 . . . . . . . . 9 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))))
2724, 26opeq12d 4835 . . . . . . . 8 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
2827csbeq2dv 3860 . . . . . . 7 (𝑏 = (Base‘(𝑐 ×c 𝑑)) → (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩)
292, 28csbie 3888 . . . . . 6 (Base‘(𝑐 ×c 𝑑)) / 𝑏(Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩
30 eqid 2729 . . . . . . . . 9 ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝑐) × (Base‘𝑑))
3130tposideq2 48893 . . . . . . . 8 (tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))) = (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥})
32 eqid 2729 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))
3332tposideq2 48893 . . . . . . . . . 10 (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓})
34 eqid 2729 . . . . . . . . . . . 12 (Hom ‘𝑐) = (Hom ‘𝑐)
35 eqid 2729 . . . . . . . . . . . 12 (Hom ‘𝑑) = (Hom ‘𝑑)
36 eqid 2729 . . . . . . . . . . . 12 (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘(𝑐 ×c 𝑑))
37 simpl 482 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)))
38 simpr 484 . . . . . . . . . . . 12 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)))
394, 7, 34, 35, 36, 37, 38xpchom 18105 . . . . . . . . . . 11 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) = (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))))
4039reseq2d 5934 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (tpos I ↾ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣)))))
4139mpteq1d 5185 . . . . . . . . . 10 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}) = (𝑓 ∈ (((1st𝑢)(Hom ‘𝑐)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑑)(2nd𝑣))) ↦ {𝑓}))
4233, 40, 413eqtr4a 2790 . . . . . . . . 9 ((𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)) ∧ 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑))) → (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4342mpoeq3ia 7431 . . . . . . . 8 (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
4431, 43opeq12i 4832 . . . . . . 7 ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
45 fvex 6839 . . . . . . . 8 (Hom ‘(𝑐 ×c 𝑑)) ∈ V
46 oveq 7359 . . . . . . . . . . 11 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢𝑣) = (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))
4746reseq2d 5934 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (tpos I ↾ (𝑢𝑣)) = (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))
4847mpoeq3dv 7432 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣))) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣))))
4948opeq2d 4834 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩)
5045, 49csbie 3888 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣)))⟩
5146mpteq1d 5185 . . . . . . . . . 10 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))
5251mpoeq3dv 7432 . . . . . . . . 9 ( = (Hom ‘(𝑐 ×c 𝑑)) → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓})) = (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓})))
5352opeq2d 4834 . . . . . . . 8 ( = (Hom ‘(𝑐 ×c 𝑑)) → ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩)
5445, 53csbie 3888 . . . . . . 7 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩ = ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝑐 ×c 𝑑))𝑣) ↦ {𝑓}))⟩
5544, 50, 543eqtr4i 2762 . . . . . 6 (Hom ‘(𝑐 ×c 𝑑)) / ⟨(tpos I ↾ ((Base‘𝑐) × (Base‘𝑑))), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5623, 29, 553eqtri 2756 . . . . 5 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (Hom ‘(𝑐 ×c 𝑑)) / ⟨(𝑥 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ {𝑥}), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑑)), 𝑣 ∈ ((Base‘𝑐) × (Base‘𝑑)) ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5714, 20, 563eqtr4ri 2763 . . . 4 (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩
5857a1i 11 . . 3 ((𝑐 ∈ V ∧ 𝑑 ∈ V) → (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩ = (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
5958mpoeq3ia 7431 . 2 (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩) = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(𝑥𝑏 {𝑥}), (𝑢𝑏, 𝑣𝑏 ↦ (𝑓 ∈ (𝑢𝑣) ↦ {𝑓}))⟩)
601, 59eqtr4i 2755 1 swapF = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑐 ×c 𝑑) / 𝑠(Base‘𝑠) / 𝑏(Hom ‘𝑠) / ⟨(tpos I ↾ 𝑏), (𝑢𝑏, 𝑣𝑏 ↦ (tpos I ↾ (𝑢𝑣)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  csb 3853  {csn 4579  cop 4585   cuni 4861  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  cres 5625  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  tpos ctpos 8165  Basecbs 17139  Hom chom 17191   ×c cxpc 18093   swapF cswapf 49264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-xpc 18097  df-swapf 49265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator