| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf1 | Structured version Visualization version GIF version | ||
| Description: The object part of the swap functor swaps the objects. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| swapf1.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| swapf1.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| Ref | Expression |
|---|---|
| swapf1 | ⊢ (𝜑 → (𝑋𝑂𝑌) = 〈𝑌, 𝑋〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7392 | . 2 ⊢ (𝑋𝑂𝑌) = (𝑂‘〈𝑋, 𝑌〉) | |
| 2 | swapf1.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 3 | 2 | elfvexd 6899 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) |
| 4 | swapf1.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) | |
| 5 | 4 | elfvexd 6899 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 6 | eqid 2730 | . . . 4 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 7 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | 6, 7, 8 | xpcbas 18145 | . . . 4 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷)) |
| 10 | swapf1.o | . . . 4 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 11 | 3, 5, 6, 9, 10 | swapf1val 49238 | . . 3 ⊢ (𝜑 → 𝑂 = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ ∪ ◡{𝑥})) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 〈𝑋, 𝑌〉) → 𝑥 = 〈𝑋, 𝑌〉) | |
| 13 | 12 | sneqd 4603 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 〈𝑋, 𝑌〉) → {𝑥} = {〈𝑋, 𝑌〉}) |
| 14 | 13 | cnveqd 5841 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 〈𝑋, 𝑌〉) → ◡{𝑥} = ◡{〈𝑋, 𝑌〉}) |
| 15 | 14 | unieqd 4886 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 〈𝑋, 𝑌〉) → ∪ ◡{𝑥} = ∪ ◡{〈𝑋, 𝑌〉}) |
| 16 | opswap 6204 | . . . 4 ⊢ ∪ ◡{〈𝑋, 𝑌〉} = 〈𝑌, 𝑋〉 | |
| 17 | 15, 16 | eqtrdi 2781 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 〈𝑋, 𝑌〉) → ∪ ◡{𝑥} = 〈𝑌, 𝑋〉) |
| 18 | 2, 4 | opelxpd 5679 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
| 19 | opex 5426 | . . . 4 ⊢ 〈𝑌, 𝑋〉 ∈ V | |
| 20 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝑌, 𝑋〉 ∈ V) |
| 21 | 11, 17, 18, 20 | fvmptd 6977 | . 2 ⊢ (𝜑 → (𝑂‘〈𝑋, 𝑌〉) = 〈𝑌, 𝑋〉) |
| 22 | 1, 21 | eqtrid 2777 | 1 ⊢ (𝜑 → (𝑋𝑂𝑌) = 〈𝑌, 𝑋〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4591 〈cop 4597 ∪ cuni 4873 × cxp 5638 ◡ccnv 5639 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 ×c cxpc 18135 swapF cswapf 49230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-xpc 18139 df-swapf 49231 |
| This theorem is referenced by: swapfid 49250 cofuswapf1 49265 cofuswapf2 49266 |
| Copyright terms: Public domain | W3C validator |